

Smoky Mountains Mobility Conference

#### Low lifecycle carbon fuels for hard-to-electrify transportation sectors

October 31, 2024 JOSh Pihl Oak Ridge National Laboratory



ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

#### Acknowledgements

**Funding:** Gurpreet Singh, Kevin Stork, Siddiq Khan, Nick Hansford (DOE Vehicle Technologies Office)

Feedback: Jim Szybist, Scott Curran, Todd Toops



#### Non-road transportation responsible for ~9% of total US GHG emissions





#### Non-road sectors are "hard-to-electrify" due to load, range, remote locations, and other application requirements



#### Distance per day/trip

Other dimensions: duty-cycle, availability of charging, durability/cooling/packaging requirements



### U.S. National Blueprint for Transportation Decarbonization envisions a mix of electrification, hydrogen and sustainable liquid fuels for non-road sectors

| 1 icon represents limited long-term opportunity2 icons represents large long-term opportunity3 icons represents greatest long-term opportunity | BATTERY/ELECTRIC | <b>O</b><br>HYDROGEN | SUSTAINABLE<br>LIQUID FUELS |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-----------------------------|
| Light Duty Vehicles (49%)*                                                                                                                     |                  | -                    | TBD                         |
| Medium, Short-Haul Heavy Trucks & Buses (~14%)                                                                                                 |                  | 0                    | ð                           |
| Long-Haul Heavy Trucks (~7%)                                                                                                                   |                  | 000                  | <b>d 1</b>                  |
| Off-road (10%)                                                                                                                                 |                  | 0                    | ð                           |
| Rail (2%)                                                                                                                                      |                  | 00                   | 5                           |
| Maritime (3%)                                                                                                                                  |                  |                      | 5 5 5                       |
| Aviation (11%)                                                                                                                                 |                  | 0                    | 55                          |
| Pipelines (4%)                                                                                                                                 |                  | TBD                  | TBD                         |



From the U.S. National Blueprint for Transportation Decarbonization <u>https://www.energy.gov/sites/default/files/2023-01/the-us-national-blueprint-for-transportation-decarbonization.pdf</u>

#### Many non-road vehicles have 30+ year lifetimes, driving the need for diesel engine retrofit solutions to achieve substantial near-term GHG reductions





K.D. Edwards et al., "Implementing low lifecycle carbon fuels on locomotive engines – CRADA with Wabtec," presentation to 2024 DOE Vehicle Technologies Office Annual Merit Review

## DOE estimates that US fuel consumption in the off-road, rail, marine, and aviation sectors could require 1.3 billion tons of biomass in 2050 (excluding on-road)



<sup>a</sup> The Base case and Expanded scenario bars above are reported on a GGE basis

\* Assumes a conversion rate of 55 gallons per ton



# ORNL estimates 1.1–1.5 billion tons of biomass available in the US in a mature market, but costs increase significantly at higher utilization





|  | Biodiesel                                                            |
|--|----------------------------------------------------------------------|
|  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>~14</sub> COOCH <sub>3</sub> |
|  | low lifecycle carbon                                                 |
|  | 1.1x diesel vol                                                      |
|  | no significant<br>combustion<br>challenges                           |
|  | NOx?                                                                 |
|  | 010                                                                  |



| Hydrogen                                            |  | Biodiesel                                                            |
|-----------------------------------------------------|--|----------------------------------------------------------------------|
| H <sub>2</sub>                                      |  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>~14</sub> COOCH <sub>3</sub> |
| zero carbon                                         |  | low lifecycle carbon                                                 |
| 4x diesel vol (as liquid)<br>7x diesel vol (as gas) |  | 1.1x diesel vol                                                      |
| pre-ignition<br>knock                               |  | no significant<br>combustion<br>challenges                           |
| NOx                                                 |  | NOx?                                                                 |
| 040                                                 |  | 010                                                                  |



| Hydrogen                                            | Ammonia                                                | Methanol                                                                  | Biodiesel                                  |
|-----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|
| H <sub>2</sub>                                      | NH <sub>3</sub>                                        | CH₃OH                                                                     | $CH_{3} (CH_{2})_{\sim 14} COOCH_{3}$      |
| zero carbon                                         | zero carbon                                            | low lifecycle carbon<br>(from biomass,<br>renewable NG, CO <sub>2</sub> ) | low lifecycle carbon                       |
| 4x diesel vol (as liquid)<br>7x diesel vol (as gas) | 3x diesel vol                                          | 2x diesel vol                                                             | 1.1x diesel vol                            |
| pre-ignition<br>knock                               | hard to ignite<br>low flame speed<br>high HOV<br>toxic | hard to ignite<br>high HOV                                                | no significant<br>combustion<br>challenges |
| NOx                                                 | NH <sub>3</sub> , NOx, N <sub>2</sub> O                | HCs (CH <sub>2</sub> O?)                                                  | NOx?                                       |
| 040                                                 | 310                                                    | 130                                                                       |                                            |



| Hydrogen                                            | Ammonia                                                | Methanol                                                                  | Biodiesel                                                            |
|-----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|
| H <sub>2</sub>                                      | NH <sub>3</sub>                                        | CH <sub>3</sub> OH                                                        | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>~14</sub> COOCH <sub>3</sub> |
| zero carbon                                         | zero carbon                                            | low lifecycle carbon<br>(from biomass,<br>renewable NG, CO <sub>2</sub> ) | low lifecycle carbon                                                 |
| 4x diesel vol (as liquid)<br>7x diesel vol (as gas) | 3x diesel vol                                          | 2x diesel vol                                                             | 1.1x diesel vol                                                      |
| pre-ignition<br>knock                               | hard to ignite<br>low flame speed<br>high HOV<br>toxic | hard to ignite<br>high HOV                                                | no significant<br>combustion<br>challenges                           |
| NOx                                                 | NH <sub>3</sub> , NOx, N <sub>2</sub> O                | HCs (CH <sub>2</sub> O?)                                                  | NOx?                                                                 |
| 040                                                 | 310                                                    | 130                                                                       | 010                                                                  |







CRADA: cooperative research and development agreement; CI: compression ignition; SI: spark ignition; DME: dimethyl ether





| Fuel     | Hydrogen                                                                                           | Ammonia                                                                                                           |  |
|----------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Partners | CRADA with Wabtec                                                                                  | Cummins                                                                                                           |  |
| Funding  | DOE VTO, DOT FRA                                                                                   | DOE VTO, DOT MARAD                                                                                                |  |
| Approach | diesel pilot Cl                                                                                    | diesel pilot Cl<br>H <sub>2</sub> -assisted Cl<br>(onboard NH <sub>3</sub> to H <sub>2</sub> )<br>Sl              |  |
| Targets  | 100% diesel compatible<br>>50% H <sub>2</sub> for retrofits<br>>90% H <sub>2</sub> for new engines | Maximize NH <sub>3</sub> utilization<br>while minimizing<br>NH <sub>3</sub> , NOx, and N <sub>2</sub> O emissions |  |









| Fuel     | Hydrogen                                                                                           | Ammonia                                                                                                           | Methanol                                                                                   |
|----------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Partners | <b>CRADA with Wabtec</b>                                                                           | Cummins                                                                                                           | CRADA with Caterpillar                                                                     |
| Funding  | DOE VTO, DOT FRA                                                                                   | DOE VTO, DOT MARAD                                                                                                | DOE VTO, DOT MARAD                                                                         |
| Approach | diesel pilot Cl                                                                                    | diesel pilot CI<br>H <sub>2</sub> -assisted CI<br>(onboard NH <sub>3</sub> to H <sub>2</sub> )<br>SI              | diesel pilot CI<br>DME-assisted CI<br>(onboard CH <sub>3</sub> OH to DME)<br>prechamber SI |
| Targets  | 100% diesel compatible<br>>50% H <sub>2</sub> for retrofits<br>>90% H <sub>2</sub> for new engines | Maximize NH <sub>3</sub> utilization<br>while minimizing<br>NH <sub>3</sub> , NOx, and N <sub>2</sub> O emissions | Maintain engine performance<br>while running on 100% methanol                              |









| Fuel     | Hydrogen                                                                                           | Ammonia                                                                                                           | Methanol                                                                                   |
|----------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Partners | CRADA with Wabtec                                                                                  | Cummins                                                                                                           | CRADA with Caterpillar                                                                     |
| Funding  | DOE VTO, DOT FRA                                                                                   | DOE VTO, DOT MARAD                                                                                                | DOE VTO, DOT MARAD                                                                         |
| Approach | diesel pilot Cl                                                                                    | diesel pilot CI<br>H <sub>2</sub> -assisted CI<br>(onboard NH <sub>3</sub> to H <sub>2</sub> )<br>SI              | diesel pilot CI<br>DME-assisted CI<br>(onboard CH <sub>3</sub> OH to DME)<br>prechamber SI |
| Targets  | 100% diesel compatible<br>>50% H <sub>2</sub> for retrofits<br>>90% H <sub>2</sub> for new engines | Maximize NH <sub>3</sub> utilization<br>while minimizing<br>NH <sub>3</sub> , NOx, and N <sub>2</sub> O emissions | Maintain engine performance<br>while running on 100% methanol                              |
|          |                                                                                                    |                                                                                                                   |                                                                                            |



pihlja@ornl.gov