

Perspective on Decarbonization of High Horsepower Applications

Marten Dane marten.h.dane@cummins.com

October 31st, 2024

Public

CUSTOMER DRIVERS & MARKET EXPECTATIONS

TRANSITION CHALLENGES AND DRIVERS OF PROGRESSIVE DECARBONIZATION

EXAMPLE POWER TECHNOLOGY EVOLUTION

Industry projections suggest a strong **ELECTRIFICATION** pathway. However, significant hurdles are increasingly becoming apparent that will delay the eventual adoption at scale Momentum has pivoted toward BRIDGE solutions with a significant focus on RETROFIT of existing fleets

CASE STUDY

FUEL DRIVERS

CASE STUDY

Cummins

3

CMI RESPONSE

FUEL DRIVERS

Means to produce alternate green fuels is highly variable across the globe

• How you make the fuel has a huge impact on the carbon intensity.

• Lifecycle analysis is required to understand true decarbonization.

Note: Carbon intensity values below zero are for Renewable Natural Gas based fuels with accounting for methane emissions that are avoided

CASE STUDY

COMBUSTION ARCHITECTURE OPTIONS

CASE STUDY

5

ENERGY TRANSITION BRIDGE

ENABLING MINERS TO ACHIEVE MID-TERM DECARBONIZATION GOALS WHILE CREATING A PATHWAY TO ZERO CARBON SOLUTIONS.

Mining market technology adoption

METHANOL LOCATION & SPRAY OPTIMIZATION

<u>Objectives</u> (1) Uniform mixing (2) Minimize
Wall Wetting (3) Minimize Variation (cylinders and cycles)
<u>Approach</u> (1) Spray Optimization, (2) Multi-cylinder/Multi-cycle simulations, and (3)
Multiple operating conditions.

7

MARINE UPFIT KIT

