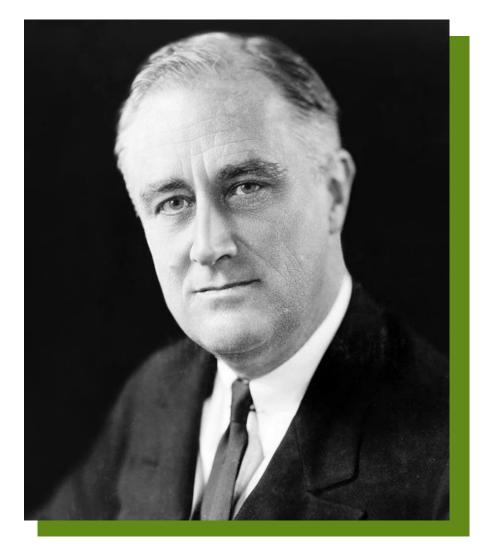
TVA's Energy System of the Future

Dr. Joe Hoagland Vice President, Innovation and Research

Smoky Mountain Mobility Conference

October 25, 2023

1920s: Hard Times in the Tennessee Valley



Improve Standards of Living

Power is really a secondary matter...TVA is primarily intended to *change* and to *improve* the standards of living of the people...

-President Franklin D. Roosevelt

TVA Mission

BUILT FOR THE PEOPLE OF THE VALLEY

ENERGY

Electricity at the lowest feasible rate and highest feasible reliability

ENVIRONMENT

Stewardship of the natural resources for best use by the public

ECONOMIC DEVELOPMENT

To attract and retain good jobs and capital investment in the Valley

1933

TVA ACT

SIGNED

1940s

1950s

NUCLEAR

1970s
PUMPED
STORAGE&
GAS

TVA'S ENERGY SYSTEM OF THE FUTURE

Since its inception, TVA has innovated to meet the needs of the Valley.

Today and in the future, the Valley needs affordable, reliable, resilient, and carbon-free energy to lead the nation in energy innovation and economic development.

A Rich History of Innovation and Catalyst for Change

Agriculture Pre-1940

- Agriculture (Fertilizer)
- Rural Electrification
- River Management
- Hydro Production

Manufacturing 1940s – 1990s

- WWII Support
- Manufacturing
- Coal Generation
- Nuclear

Information 2000s - Current

- Advanced Nuclear
- Connected Communities
- Decarbonization
- Electric Vehicles
- Energy Efficiency
- Future Grid Performance
- Gas Generation
- Regional Grid Transformation
- Renewables/Wind
- Storage Integration

Energy Economy
Future

- Advanced Nuclear
- Virtual Power Plants
- Widespread Electrification
- Hydrogen Economy
- Low/No Carbon Generation
- Digitization
- Cybersecurity
- Augmented/Virtual Reality
- Artificial Intelligence
- Machine Learning

TVA System Today

Partnering with 153 local power companies that supply electricity to approximately 10 million people across seven Southeastern states with 57 directly served customers, including 50 industrial customers and 7 military and federal installations.

Generating Assets

- · 3 Nuclear Sites (7 Units)
- · 5 Coal-Fired Sites (25 Units)
- · 29 Hydroelectric Sites (109 Units)
- · 1 Pumped-Storage Site (4 Units)
- 9 Combustion Turbine Gas Sites (86 Units)
- 8 Combined Cycle Gas Sites (14 Units)
- · 1 Co-Generation Unit
- · 14 Solar Energy Sites

Largest Public Power Provider In the United States

3rd Largest Electricity Generator in the Nation

Based on Total Electric Generation in 2020

One of the Nation's Largest Transmission Systems

In high voltage lines among United States Utilities 16,400 miles of high voltage lines and 69 interconnections with neighboring electric systems

3rd Largest Nuclear Fleet

In the United States, providing over 40% of TVA's energy

99.999% Reliability Since 2000

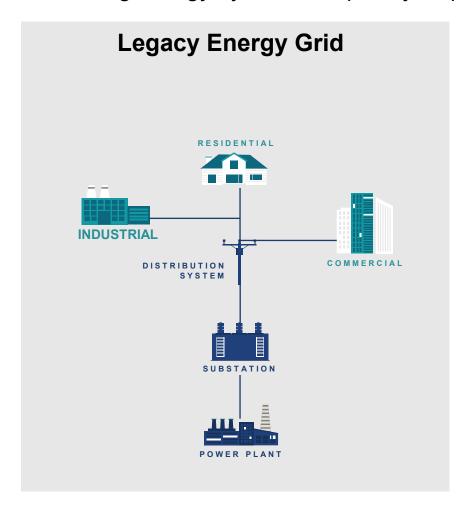
Top-decile industry performance

Over

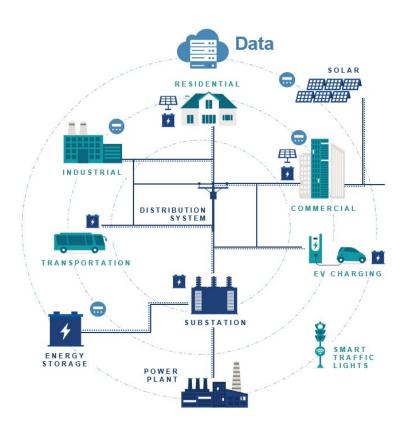
40,000 Miles of Rivers, Streams and Tributaries

Including the 652-mile Tennessee River

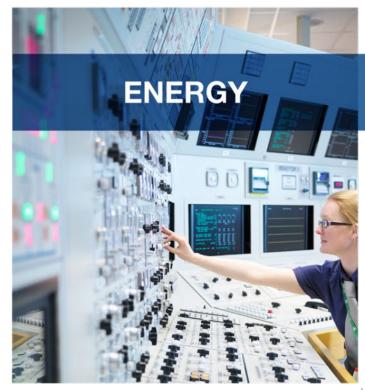
Approximately 350,000 Jobs & Almost \$46 Billion


Capital investment in the Tennessee Valley generated by TVA economic development activity over the past five years

Energy System of the Future


Increasing energy system complexity requires planning, integration, and innovation

Emerging Drivers


Valley Electrification
Economic Development
DERs / Storage
Demand Response
Variable Renewable Energy

Energy System of the Future

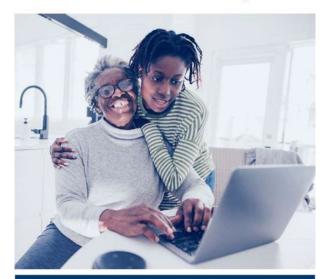
Delivering Our Mission to You

Provide *affordable*, *reliable* power.

ENVIRONMENT

Steward the Valley's *natural resources*.

ECONOMIC DEVELOPMENT



Partner for *economic growth*.

Energy System of the Future

Reinforce Reliability

Provide efficient, reliable, resilient power

Protect the Environment

Integrate clean, renewable energy sources

Keep Power Costs Low

You are in control of your energy dollar

Grid of Tomorrow | System Operations Center | Advanced Nuclear Solutions | Clean Energy

Innovation and Research

Communities

Advanced **Nuclear Solutions**

Decarbonization Options

Innovation Scouting

Storage Integration

Future Grid Performance (Inertia)

Regional Grid Transformation

Partnerships

Innovation Network

Generation

Transmission

Distribution

Optimizing Existing Assets

Environmental Stewardship

Advanced Nuclear Solutions

Provide reliable, affordable, flexible, and clean generation options

Small Modular Reactors

- Zero Carbon Emissions
- Benefits of nuclear with lower capital cost
- Operational Flexibility & Grid Stability
- Price Stability
- Little or no fuel cycle risk
- Small footprint, reduced emergency planning zone

Decarbonization Options

Advance a suite of technologies to cost-effectively reduce TVA's carbon footprint to net-zero

Carbon capture, sequestration & utilization

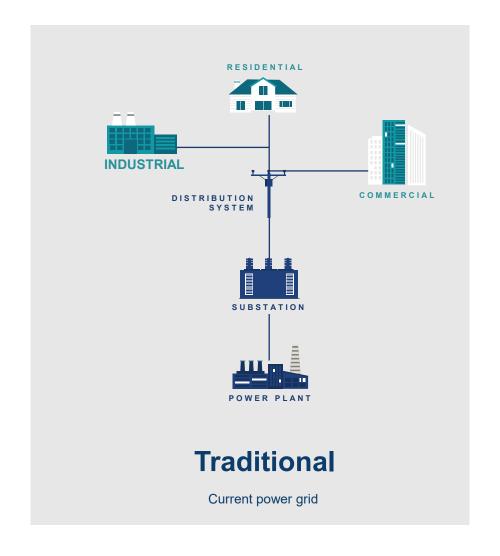
Alternative fuels

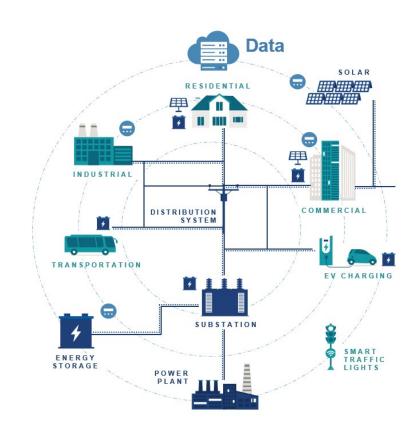
Renewables + storage

Electrification

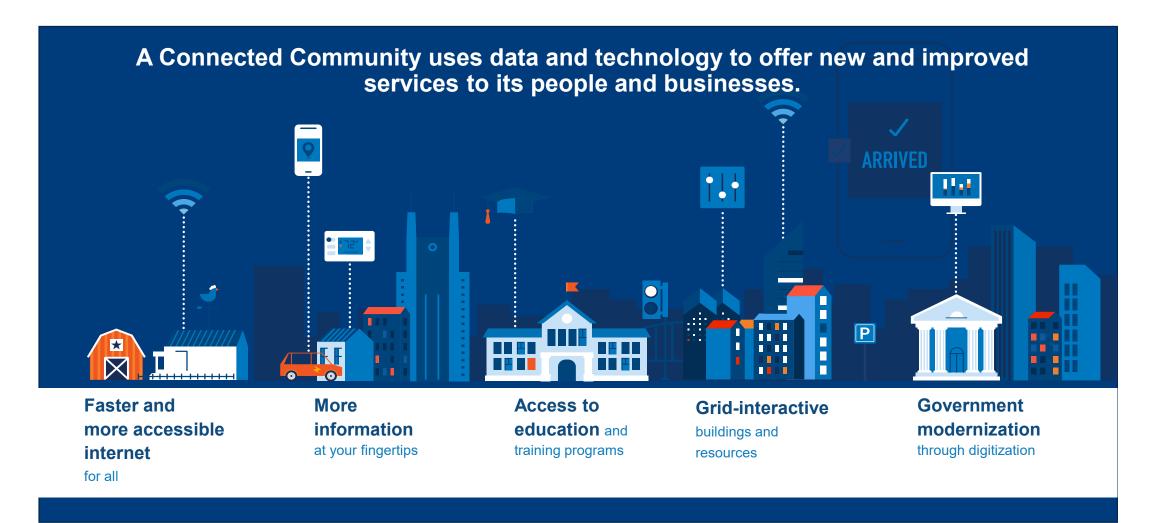
Advanced nuclear

Future Grid Performance


Maintain a stable and reliable grid while fostering the evolution of the Energy System of the Future


- Improve processes to facilitate a fast-paced and evolving resource mix with new technologies
- Optimize approaches and tools to ensure system stability and performance in the future grid
- Evaluation and adoption of new grid technologies

Regional Grid Transformation



Connected Communities

Electric Vehicle Evolution

Charging Infrastructure Availability

- Remove "range anxiety"
- Foundational EV charging network
- Partner with Local Power Companies (LPCs)

EV Availability and Offerings

- Partner with automakers and fleets
- Support making a wide range of EVs available

Innovative and Supportive Policies

- Remove utility policy or pricing barriers
- Craft policies and pricing that encourage investment and enable a market

Consumer Awareness

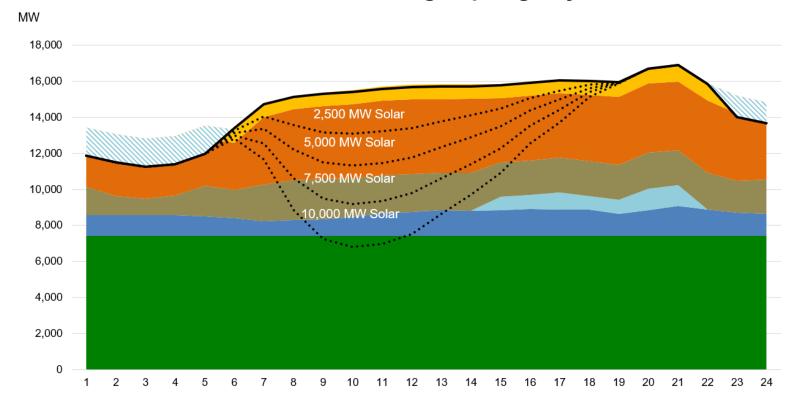
- Help consumers make sound choices
- Educate, inform, and promote while lifting TVA and LPC brands

Removing market barriers in key areas

Energy Storage

A Case For Change

Solar: Flexibility and Capacity


Must Balance Generation and Load:

- Not enough is bad
- Too much is also bad

Major Issues:

- Variability
- Winter Capacity
- Large Ramps
- Curtailments

Load for an average spring day

Models show TVA will need a mix of long duration and short duration storage

Potential Battery Energy Storage TVA-Specific Use Cases

Voltage Support and Frequency Regulation

- Improve power quality near sensitive loads, such as data centers or industrial sites
- Maintain voltage at LPC delivery points

Transmission Support

- Could provide alternative to large fossil unit dispatch at lower load levels to provide local metro-area grid support
- Alternative method of transmission support for remote system locations (Geographically Isolated Areas)

Peaker Replacement

(Electrically Isolated Areas)

- Alternative to running CTs during transmission line outages for local grid support
- Alternative to running John Sevier on fuel oil during extreme cold events

Black Start

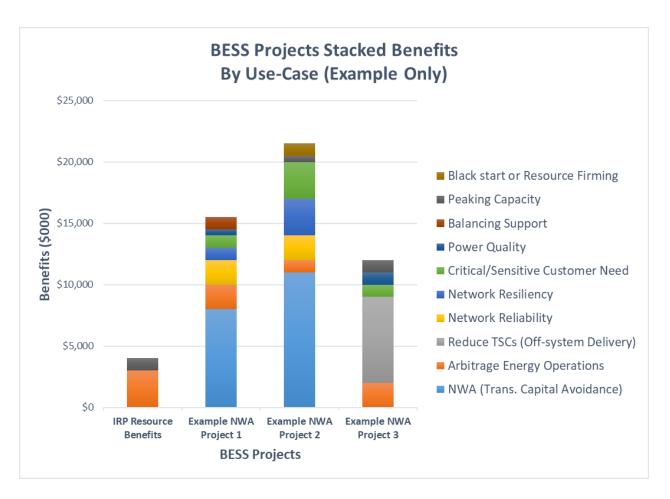
 Provide grid resiliency and local black start capability

Reserve Capacity

Additional spin/non-spin reserve resource

Peak Load Shaving

 Reduce demand on capacityconstrained assets


Battery Energy Storage System: Stacked Benefits

Locational (Distribution and Bulk System)

- Resiliency/Microgrid: Grid Forming Inverter
- Voltage Support: Dynamic real and reactive power support
- Power Quality: Power Quality for Industrial/Commercial loads
- Economic Development: Allow for quick load increases

Non-Locational

- Peak Power: Alternative to Gas Generation
- Flexibility: Renewable Generation variability
- System Ramping: Large solar and system ramps (duck curve)
- Curtailment: Allow Nuclear and Carbon Capture

Long Term Storage Plan

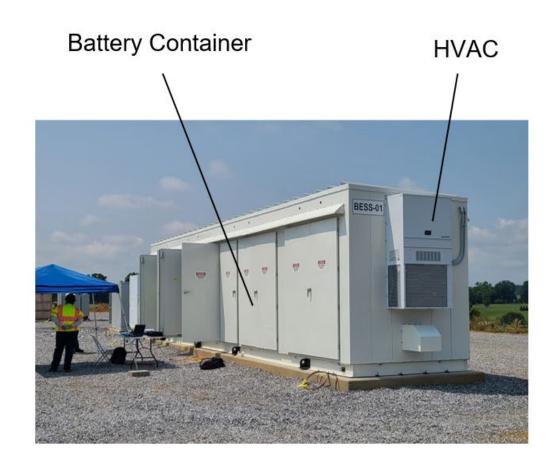
Designed to give TVA process and operational experience to fully integrate grid scale storage into the power grid.

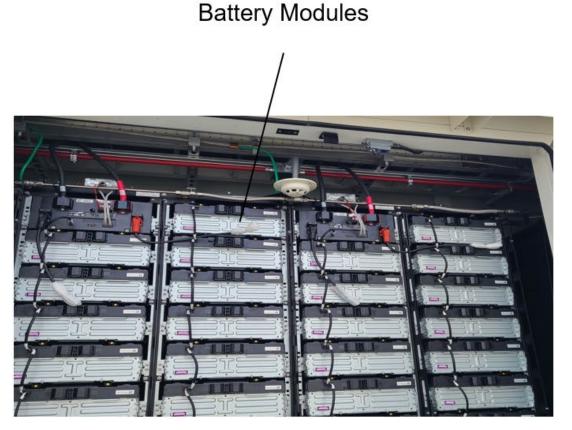
Transmission Battery Demonstration

- Develop TVA process and understanding
- Transmission Support: Voltage/Regulation
- Operational Strategies
- Lithium-ion chemistry most widely used chemistry
- Safety Measures

Evaluating Emerging Technology

- Lithium-ion chemistries
- Flow Batteries chemical batteries
- Hybrid storage systems
- Gravity Storage
- Pump storage


Distribution Battery Demonstration


- Communication and control
- Develop process
- Investigating shared asset benefits
- Integrate multiple small batteries into the TVA system

Battery Energy Storage System: Vonore

Vonore BESS- 20MW/40MWh (Dec 2023)

Pumped Storage

Rates:

- Lowest cost mature option for long-duration storage
- Regulatory and fuel cost risk reduction

Reliability:

Requires less energy storage than traditional and renewable energy sources

Job Opportunities:

Construction and ongoing facility operations and maintenance

Environmental Impact:

 Enables low-carbon energy generation, through additional solar, nuclear, and carbon capture technologies

Study Phase: land, environmental, and community impact assessments

Storage Integration Initiative

Implement a long-term strategy to integrate energy storage for system flexibility and maximizing renewables

Storage Technology	Typical Duration	Technology Maturity
Lithium-ion battery	2-4 hours	Being deployed
Flow battery	8+ hours	Demonstration
Gravity storage	8+ hours	Demonstration
Pumped storage hydro	8+ hours	Mature

Lithium-ion Battery

Flow Battery

Gravity Storage

Pumped Storage

Solar + Storage

Supports grid stability by balancing the supply and demand of electricity

- Enables time shifting of solar energy production, allowing excess energy to be stored during periods of low demand and used during peak hours, reducing strain on the grid.
- Growing residential storage will provide other benefits including supporting growth in electric vehicle (EV) adoption.
- Well-positioned to adapt to an increasingly electrified future by seamlessly integrating with EVs, heat pumps, and other connected home appliances.

Vehicle to Grid

- EVs are "batteries with wheels" and with the right equipment, can discharge electricity
- Potential use cases:
 - Emergency backup power
 - Demand response
 - Peak load reduction
- Example: discharge electric school buses during summer break to reduce summer peaks
- Technology is improving, but cost and complexity remain high

TENNESSEE VALLEY AUTHORITY