Chattanooga's Smart Infrastructure for Safe and Efficient Mobility Systems

Mina Sartipi

Executive Director of UTC Research Institute Guerry Professor of Computer Science and Engineering at UTC Joint Appointment with ORNL

ΤS

Chattanooga's Vision: Chattanooga be the city-wide testbed to next-generation smart city and transportation (electric, connected, and automated vehicles)

Partners/ Collaborators

- City of Chattanooga
- Hamilton County
- Electric Power Board (EPB) of Chattanooga
- CDOT/ TDOT
- The Enterprise Center in Chattanooga
- Tennessee Valley Authority (TVA)
- Tennessee American Water
- Siskin Hospital for Physical Rehabilitation
- Erlanger Health Systems
- Co-Lab
- US Ignite
- MetroLab Networks
- South Big Data Hub

ΤS

 Next Generation Internet (NGI) - European Commission initiative to shape the development and evolution of the Internet into an Internet of Humans

- Oak Ridge National Lab (ORNL)
- Georgia Tech Research Institute (GTRI)
- Georgia Tech
- University of Pittsburgh
- Vanderbilt University
- University of Arizona
- University of San Francisco
- Colorado School of Mines
- Virginia Tech
- University of Tennessee at Knoxville
- University of Memphis
- LeMoyne-Owen College
- I3s Research Center Leibniz University (Germany)



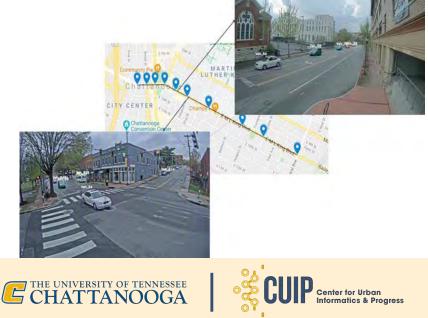
How It Started!

NSF - US Ignite: Fleet Management of Connected and Autonomous Vehicles in Urban Settings – 2016

Chattanooga Testbeds

Testbed-As-A-Service

- TaaS Cloud-based platform that provides streamlined access to testbed resources and data
- Accessible anywhere
- Software Development Kit Access to historical streams and real-time data streams
- Hybrid Event Driven Architecture
 - Data filtered, enriched, and processed at Edge, On-Premise, and Cloud
- Events: SPaT, CV Msg, Approach Arrival, Pedestrian Crosswalk, etc.
- 10,000,000 Events Messages/ Day
- 2 Billion Data Points



Digital Twin

- Real-time data on traffic flow and traffic state using AI/ ML
 - object detection & object tracking
 - multi-target multi-camera tracking
- Real-time speed and travel time
- Real-time data from all traffic controllers
- Collecting data from connected infrastructure and connected vehicles
 - DSRC
 - CV2X
- Real-time data from transit

Digital Twin - MLK Smart Corridor

Applications

Application Categories

- Safety Applications (VRU and Roadway)
- Traffic Optimization and Control
- Nexus of Transportation, Energy, and People

Safety Applications	Traffic Optimization and Control	Nexus of Transportation, Energy, and People
 VRU Safety Roadway Safety Cooperative Perception and Autonomation 	 <u>Eco Traffic Signal Timing</u> Emergency Vehicle Preemption Transit Signal Priority Smart Parking 	 System-of-Systems Analytics E2E Decision Support System for EV Charging

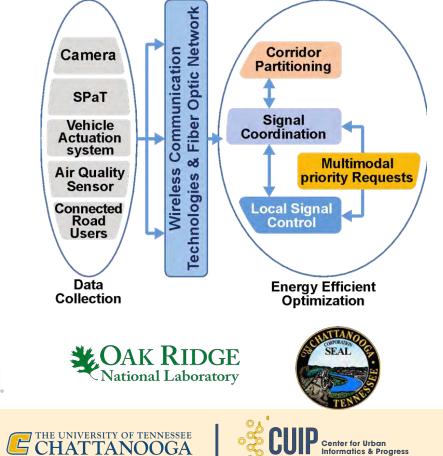
Optimizing Traffic Control Systems

Georgia

Tech 🛛

Improve corridor-level fuel consumption and GHG emissions

- Ecological Adaptive Traffic Control System (Eco-٠ **ATCS**) that minimizes an Ecological Performance Index (Eco-PI)
- A bi-level signal control system: a lower-level at local ٠ intersections and a global-level, enabling coordination


University of

Pittsburgh

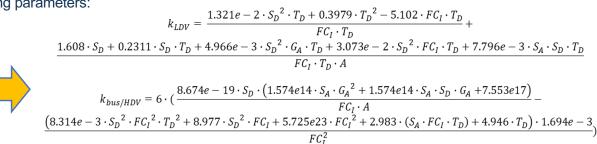
A flexible priority system ready to accommodate transit priority and vulnerable road users (VRU)

THE UNIVERSITY OF TENNESSEE CHATTANOOGA

ΤS

Informatics & Progress

- Ecological Performance Index (Eco-PI)
- Adaptive Traffic Controller Optimization Algorithm
- GHG and Energy Consumption
- Hardware-in-the-Loop (HIL)
- Software-in-the-Loop (SIL)
- Field Test


Eco-Pl

Development of Ecological Performance Index (Eco-PI) for Various Vehicle Types

Stop penalty (k) is defined as function of following parameters:

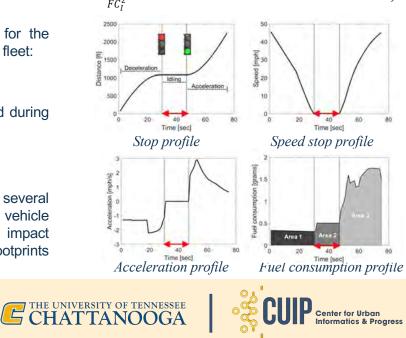
 $K = \frac{f(S_A, S_D, G_A, FC_I, T_D, A)}{S_A, FC_I, T_D, A}$

- *S_A* : accelerating (final) speed (mph)
- *S_D* : decelerating (initial) speed (mph)
- G_A : accelerating grade (%)
- *FC_I* : *idling* fuel consumption rate (g/sec)
- *T_D* : decelerating duration (sec)
- A : acceleration (ft/sec²)

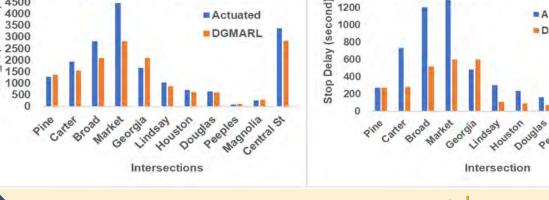
• If the fleet consists of both categories (LDVs and buses (HDVs)) final *K* for the movement should be adjusted by the percentage of each vehicle category in the fleet:

$$K = (1 - p)k_{LDV} + p \cdot k_{bus/HDV}$$

 Eco-PI is a combination of mobility and sustainable measures to be minimized during the optimization, which can be mathematically expressed as:


$$Eco - PI_{total}^{i} = \sum_{m=1}^{n} D_{m_{i}} + K_{m_{i}} * S_{m_{i}}$$

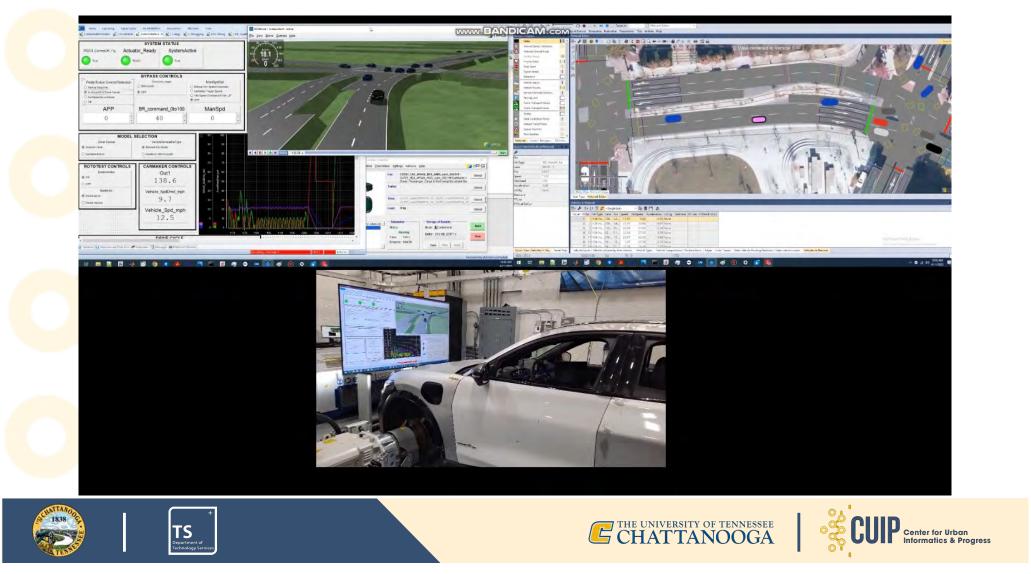
- i: Observed intersection
- n: Total number of eligible movements
- m: An eligible movement in the network
- D: Stopped delay for movement
- K: Stop penalty of the fleet
- S: Number of stops


Eco-PI considers the impact of several operating conditions (e.g., vehicle type, speed, grade) that impact vehicular fuel consumption footprints at signalized intersections.

$a_{1,t}^* = \pi(a_{1,t}|\mathbf{s}_{1,t}); \pi_{\theta i,t}$ RL-enabled **Global Optimization – RL** Agent 1 $a_{2,t}^* = \pi(a_{2,t}|\mathbf{s}_{2,t}); \pi_{\theta i \cdot t}$ RL-enabled • Using Decentralized Graph-based Multi-Agent Reinforcement Agent 2 Learning (DGMARL) to optimize signal timing $a_{N,t}^* = \pi(a_{N,t}|\mathbf{s}_{N,t}); \pi_{\theta i,t}$ Ш RL-enabled $(a_{1,t}^*, a_{2,t}^*, ..., a_{N,t}^*)$ • Objective Function: Eco Pl Agent N Input: Vehicles occupancy, Signal State 0 $(s_{2,t}, r_{2,t})$ $(s_{1,t}, r_{1,t})$ $(s_{\mathrm{N.t}}, r_{\mathrm{N.t}})$ Output: Switch or Stay in current phase 0 Eco Pi_{i.1} Signal Phase Control: Phase sequence free, priority given to 0 **Digital Twin** h_{2,t} the phase with highest occupancy; h_N Local • **Constraints Enforced:** Minimum green, Pedestrian recall, observation N **Digital Transportation** (s_{i.t}) Environment + Sensors Pedestrian, Yellow and red clearance time Graph Representation of Local and Global Observation Eco Pi: 1-hour simulation Stop Delay: 1-hour simulation **Test Scenario:** 5000 1400 4500 (pucced) (pu (puo 3500 3500 2500 2500 2000 Actuated Actuated Data: PM-peak hour, Dec-15-2022 DGMARL DGMARL 800 Summary of Results 600 Eco

- Overall Eco Pi improved by 16.63%
- Overall stop delay improved by 43.80%
- Number of stops reduced by 15.13%

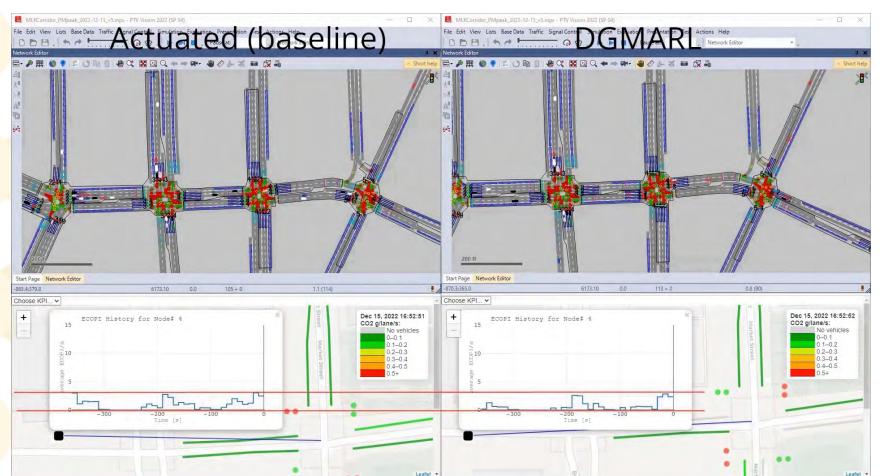
TS Department fechnology

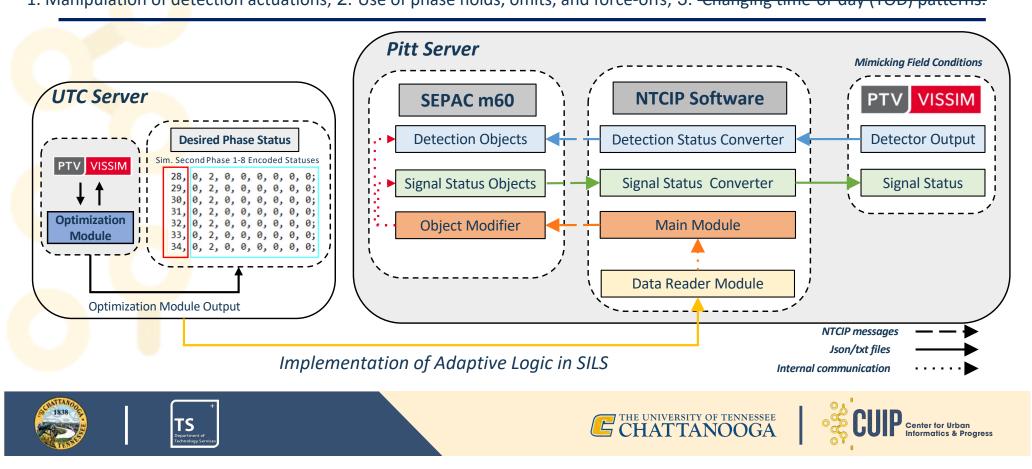


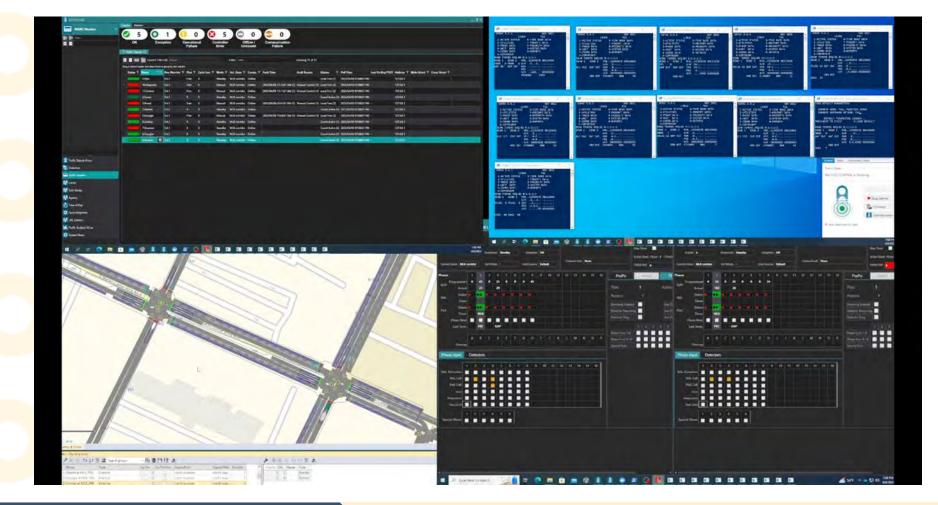

Control St

Magnolia

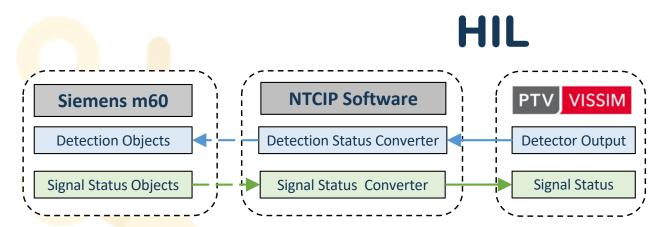
Peeples










SILS

Three ways of controlling signal timings in adaptive traffic control with the actual field controller (SEPAC): 1. Manipulation of detection actuations; 2. Use of phase holds, omits, and force-offs; 3. -Changing time-of-day (TOD) patterns-



