

Vehicle-to-Home Integration to Improve Grid-Interactivity and Resilience

Helia Zandi R&D Staff Computational Science and Engineering Division Oak Ridge National Laboratory zandih@ornl.gov

10/26/2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Improve Reliability – Engaging Building Loads/DERs

- The need for adaptable and scalable control solutions is increasing as we are going through building and transportation electrification.
- There is an immense opportunity for a management system that can control and coordinate the power use of these devices

CAK RIDGE

Southern Company Smart Neighborhood Initiatives

Understanding tomorrow's home today

Two first-of-a-kind smart home communities at the intersection of energy efficiency, distributed energy resources & buildings-to-grid integration and the traditional utility model

CAK RIDGE

National Laboratory Southern

Company

- 46 townhomes
- Atlanta, Georgia
- Homeowner owned solar + storage
- Grid integration of solar, storage, HVAC, water heating & EV charging

SMART NEIGHBORHOOD®

62 single-family homes

- Birmingham, Alabama
- Utility owned, grid-connected microgrid
 - \rightarrow 330 kW solar
 - \rightarrow 680 kWh storage
 - \rightarrow 400 kW NG generator
- Grid integration of microgrid, water heating & HVAC

Major Research Partners

Electric Power Research Institute and U.S. Department of Energy's Oak Ridge National Laboratory Key Vendor Partners LG Chem, Delta, Carrier, ecobee, Rheem, SkyCentrics, Flair, Vivint, Pulte Homes, Signature Homes

Key Results

Homes are 30-40% more efficient Successful microgrid islanding New business opportunities deployed

Field Deployment and Validation Approach

CAK RIDGE

National Laboratory

Southern

Company

Phased Testing Approach

Residential-Level

Optimization

(s,a,r,s') fo experience replay

Replay buffer

min $L_{\odot} = (Q(s|s; \theta^{\circ}) - Q^{\operatorname{target}})^2$

 $O^{target} = r + vO(s^2a^2;\theta^{(j)})$

r = -cost - penalty

Mini-batch

sampling

ORNL Research Home

- Unoccupied Research Home
- Development Testing

Field Testing

- User Acceptance Testing
 Phase
- Community-level deployment

Neighborhood-Microgrid Optimization

Vehicle-to-Home Integration to Improve Grid-Interactivity and Resilience

Percentage of maximum charging capability of the truck (19.2 kW) with respect to the total panel capacity.		
Residential Panel Ratings	Charging Percentage of Load (with a safety factor of 20%)	
100	80% (100%)	
150	53% (67%)	
200	40% (50%)	
400	20% (25%)	

Cost associated to Panel upgrade: (<u>https://www.angi.com/articles/ask-angie-what-does-it-cost-upgrade-200-amps.html</u>)

Panel Amperage	Cost (Panel Only)	Cost (Panel + Install)
100 amps	\$100-\$200	\$800-\$1,500
150 amps	\$150-\$250	\$1,300-\$1,600
200 amps	\$250-\$350	\$1,300-\$2,000
300 amps	\$350-\$500	\$1,800-\$3,500
400 amps	\$500+	\$2,000-\$4,000

Time to charge the F-150 Lightening truck based on different charging rate and battery capacity.

EV Charging	Time to Charge (20 to 90%)	
Rates	98kWh	131kWh
19.2kW	~ 3.5h	$\sim 4.8h$
15 kW	~4.5h	~6.11h
10 kW	~6.8h	~9.17h
5 kW	~ 13.7h	~ 18.3h

Key Advances to Address Scalability

• System Integration – Overlay Architectures

- Diverse set of requirements in these two domains
- Integration System of systems

National Laboratory

- Models Online learning-driven models
 - Characterize devices based on available sensor data
 - Forecast energy-use based on disturbances and constraints

• Controls - Grid-interactive Building Controls

- Optimize resources for demand reduction and grid support
- Coordinated control strategies for a large number of EVs to improve grid-Interactivity and resilience

Thank you!

Helia Zandi zandih@ornl.gov

8