

Integrated Motor and Drive ' (IMD) for Traction Applications

Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC)

Department of Electrical and Computer Engineering

University of Wisconsin-Madison

© 2023

About WEMPEC (Wisconsin Electric Machine and Power Electronics Consortium)

Founded in 1981

- Prof. Don Novotny
- Prof. Tom Lipo

People

- 5 Faculty
- 7 Faculty Affiliates
- 1 Emeritus Faculty
- 3 Staff
- 21 PhD Students
- 16 MS-R Students
- 12 MS-P Students

700+ Degrees granted55+ Active Members

WEMPEC Faculty

Prof. Giri Venkataramanan Director

- Power converter circuits, topologies, modeling, dynamics, design and control
- Power electronics in electric utilities
- Industrial drives
- Energy sustainability and technology access

Prof. Bulent Sarlioglu

DIRECTOR OF TECHNOLOGY AND COLLABORATION

- Power electronic converters using wide band-gap (WBG) devices
- Power dense motors for aerospace
- Vehicle electrification

.

- Industrial applications
- WBG current source inverters

Prof. Dan Ludois

DIRECTOR OF RESEARCH

- Electrostatic machines
- Wound rotor machines
- Low power medium voltage converters
- Capacitive wireless power transfer
- Passive component
 integration

WEMPEC

0000

WEMPEC Faculty

Prof. Jinia Roy Associate Director

- Renewable energy systems
- Medical power conversion (MRI)
- Physical applications (plasmas)
- WBG based modular power electronic architectures
- Pulsed power applications.

Prof. Lei Zhou Associate Director

- Precision
 Mechatronics
- Semiconductor manufacturing equipment
- Robotics
- Medical devices

Prof. Tom Jahns Emeritus Professor

- Electric machines, especially PM machines
- Power conversion and control for distributed generation
- Microgrids
- Battery energy storage

WEMPEC

WEMPEC Members

ABB Drives and Power Products Division Aisin Corporation Allied Motion American Axle & Manufacturing ANSYS Inc. Arnold Magnetic Technologies **BAE Systems Controls Beta Technologies Boeing Company** BorgWarner Caterpillar **Collins Aerospace Crane Aerospace & Electronics** Cummins, Inc. **Danfoss Drives** Delta Electronics, Inc. dSPACE, Inc. Eaton Controls and Protection Division Eaton Research Labs

Electronic Concepts, Inc. Ford Motor Company Gamma Technologies **GE** Aviation – Electrical Power **GE Global Research Center Generac Power Systems General Motors Graco-Electric Torque Machines** Ingersoll Rand John Deere Construction & Forestry John Deere Intelligent Solutions Group Kohler Company, Power Systems Div. LEM U.S.A., Inc. LiveWire Miller Electric Mfg. Co. Milwaukee Electric Tool Corp. Mitsubishi Electric Research Labs MOOG, Inc. Nidec Motor Corp. Nissan Research Center

Oshkosh Corporation Parker Hannifin POWERSYS Inc Rockwell Automation Motion Controls Rockwell Automation Standard Drives Stellantis TECO – Westinghouse Teledyne LeCroy Trane Company Typhoon-HIL, Inc. Verdego Aero Woodward Airframe Systems

EV Electric Traction Machine Requirements

- High Efficiency
 - Smaller Battery
 - Longer Range
 - Less Cooling
- High Volumetric Power Density (kW/l)
 - More Passenger Space
- Low Cost
 - No heavy rare earth element
- High Mass Specific Power (kW/kg)
- High Peak Torque
- High Maximum Speed
- Wide Constant Power Speed Ratio
- High Maximum Operating Temperature
- High Reliability
- Low Ripple Torque

- Permanent Magnet (PM) machines are excellent for applications emphasizing operation in constant-torque regime (e.g., servos)
- PM machines often cause problems in applications requiring wide ranges of constant power (e.g., traction)

Integrated Motor and Drive for Traction Applications

SiC MOSFET half bridge modules

Project Objectives:

Pursue an aggressive research program to merge *high-torque-density traction machines* and *highefficiency inverters* into state-of-the-art **integrated motor drive (IMD)** packaged inside combined housing that will exceed existing traction drive performance metrics in key categories, as follows:

Performance Metric Targets					
Metric	Motor	Pwr Electr.			
Power Density (kW/L)	≥ 50	≥ 100			
Cost (\$/kW)	≤ 3.3	≤ 2.7			
System Peak Power Rating (kW)	100	100			

Our project aims to develop advanced IMD technology for achieving major performance improvements at lower cost

Electric Vehicle Inverter-Motor Evolution

WEMPEC

2000

Nissan Leaf

Shimizu et al, SAE 2013 Congress

Power cable elimination and mass reduction by 10%

Feature #1 Use Current Source Inverter instead of Voltage Source Inverter (All Vehicles in the Market)

Low-THD sinusoidal voltaae

and current waveforms

High dv/dt, creating motor insulation stress

Required Performance

CSI replaces thermally-limited dc-link *capacitor* (<150°C) in VSI with a compact high-temperature inductor (> 200°C)

- CSI has much more *sinusoidal output voltage* waveforms compared to VSI •
- CSI requires reverse-voltage blocking switch configuration that can block voltage in both polarities

WBG-based CSI overcomes many of VSI limitations by significantly lowering output dv/dt stress, CM EMI, and temperature limitations

CSI-based Motor Drive System using WBG Devices

Introduction to CSI-Based Motor Drive System

11

Appealing Features of CSIs vs. VSIs

WBG-based Current-Source Inverter (CSI) overcomes many of the VSI limitations by significantly lowering output dv/dt stress, CM EMI emissions, bearing current risks, and temperature limitations

Feature #2

No Heavy Rare Earth Magnets "No Dysprosium"

Surface Permanent Magnet Machine

RE Ce La Pr Nd Sm g

Tm

Er

Yb

Lt

HRE

Eu

Gd

Tb

Definition of Rare Earth (RE) and Heavy Rare Earth (HRE) Material [44]

Ho

Dv

Chevy Volt electrical machine rare earth material usage

There is high demand and research opportunity of PM machine design without HRE

PM Machine Design without Heavy Rare Earth Material

Price change for dysprosium and neodymium [45]

- No heavy rare earth material
 - Reduce machine cost

Higher demanganization Lower temperature rating

Permanent Magnet Machine Fabrication Stator and Rotors (SPM and SIPM)

Stator

Electrical machine components have been fabricated, including stator with winding and RTDs, housing, and two permanent magnet rotors

Feature # 3

Use air cooling for rotor by

Keep rotor losses very low

- Laminated Magnets - Low loss steel

Internal Rotor Oil Cooling - Audi E-Tron Cooling System

"Audi e-tron Electrical Components (Technical Animation)" https://www.youtube.com/watch?v=sicWHkG6g8c&t=30s

Cooling of the power electronics

Semiconductors can dictate maximum permissible cooling water temperature instead of motor

Rotor internal cooling

- Used convection cooling by discharging heat occurring in rotor directly to coolant
- Equalize the inner and outer bearing temperature which benefits acoustic and bearing robustness
- Uses non wearing silicon carbide sealing rings to prevent coolant leakage

Stator cooling

- Uses conventional cooling on outer surface of stator core
- Coolant is routed through circulating cooling channels between stator core and housing

Bearing plate cooling

• Reduce both temperature of rotor bearings and temperature of wall separating machine from gear

An integrated application of cooling system for both motor and drive in one water loop

Simpler IMD Cooling Approach

• The integrated cooling system consists of shared water jacket and forced air cooling

- > Shared water jacket dissipates heat from power electronics and machine stator through conduction
- > Forced air cooling dissipates heat from machine rotor and stator end winding through convection
- The pressure and flow requirements for both the water and air fall within achievable ranges for cooling the integrated motor drive
- Water (6 L/min with 10 psi pressure drop), Air (0.01 m^3/s with 2.1 psi pressure drop)

Combination of water jacket and forced air is an effective thermal management configuration for the integrated motor drive

Coolant Flow Path

Thermal FEA Simulation at Peak Power (100kW)

9.264e+01

8.986e+01

8.707e+01

8.429e+01

8.150e+01

7.872e+01

7.593e+01

7.315e+01

7.036e+01

6.758e+01

6.479e+01

71.31 Max

69.892 68.473

67.054 65.635

64.216

62.797 61.378

59.959 58.54 Min

End windings immersed in thermallyconductive potting material

Critical

Temp.

740

220

220

180

85

Rotor	Temperature Distribution				
	Part	55 kW @ 6,667 rpm	55 kW @ 20,000 rpm	100 kW (30s transient) @ 6,667 rpm	
	Stator Lam. [°C]	91.4	104.1	100.4	
	Winding [°C]	120.3	146.9	195.0	
	End Winding [°C]	122.3	142.0	175.1	
	Sleeve [°C]	61.8	71.3	63.5	
	Magnet [∘C]	61.2	70.8	62.9	

The maximum temperatures reached in all of the key components at 100 kW power are acceptable

Permanent Magnet Machine Fabrication I: IMD Housing

Inner Housing

Outer Housing

- Water cooling jacket is fabricated with inner housing and outer housing
- O-rings between the two housings (not shown) are used to reduce risk of leakage

Permanent Magnet Machine Fabrication III: Complete Machine and Housing

Drive End View showing Air Inlets

Side View showing Water In/Out

Non-Drive End View showing Electrical Leads

Three views highlight key electrical, water, and air interface details

WEMPEC

Conclusion

- Efficiency of motor and power electronics is important
 - More range
 - Smaller battery
- No heavy rare earth motor design
 - Sustainable design
 - Cheaper
- Improved thermal design
- Air cooling of rotor cheaper and easier
- Integrated cooling of power electronics and motor

Future Challenges

- Scaling up to ~1 MW motor and drives
 - SUVs and Minivans
 - High-Performance Vehicle
 - Busses
 - Trucks
 - Off-road vehicles
- Fault-tolerant drives
- What happens if the motor or power electronics break down when driving?
- Can we design better systems with multiple power drives in a vehicle
- EMI/EMC compliant Design
- Critical Materials considerations

Autonomous 1 MWhr Electric Tractor

John Deere (Europe) prototype/development autonomous electric tractor; 500kW drive system, <u>1MWhr battery</u>

Example photos below of 'office pod' wireless control center, charging connections https://www.futurefarming.com/tech-in-focus/autonomous-semi-autosteering-systems/video-john-deere-shows-autonomous-electric-tractor/

Acknowledgements

Thank you To Our Collaborators: NREL, ORNL, and Ames Lab

AND

DOE Vehicle Technologies Office Award Number DE-EE0008704