Electrification Enabling Technologies

Keynote presentation

Giorgio Rizzoni, The Ford Motor Company Chair In Electromechanical Systems

Professor, MAE and ECE Departments, The Ohio State University

SCIPII

OCT. 24, 2023

CHATTANOOGA, TN

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Energy Considerations

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Key Elements in a Vehicle

POWERTRAIN/ PROPULSION SYSTEM

A propulsion system or powertrain is the ensemble of components that produce the motive force to push an object forward

ENERGY STORAGE SYSTEM

Energy Storage Systems refer to equipment that can store various types of energy to power the propulsion system

Power Technologies

At the beginning of the 20th Century most vehicles' power technologies were already available

STEAM ENGINE

Invented in 1712 by T. Newcomen and improved by J. Watt in 1765. In 1900 steam cars were produce by "Locomobile" and "Stanley Motor Carriage Company" in the United States.

INTERNAL COMBUSTION ENGINE (ICE)

In 1876, Nicolaus Otto patented the first four-stroke cycle engine. In 1879, Karl Benz patented a reliable two-stroke gasoline engine. In 1892, Rudolf Diesel developed the first compression ignition engine.

ELECTRIC MOTOR

T. Davenport invented the first batterypowered electric motor in 1834. The first DC motor was invented by F. J. Sprague in 1886. In 1888, Nikola Tesla patented his AC induction motor.

Energy Storage Technologies

Similarly, most energy storage technologies were first invented in the 18th and 19th Centuries

LIQUID FUELS

In 1891, the Shukhov cracking process became the world's first commercial method to break down heavier hydrocarbons in crude oil to increase the percentage of lighter products.

BATTERIES

Italian physicist A. Volta built and described the first electrochemical battery in 1800. The first mass-produced model dry cell was marketed by the National Carbon Company in 1896.

What Makes a Fuel Good for Transportation?

Energy Density:

The amount of energy contained in a specific quantity (mass or volume) of material. It mostly controls the vehicle **range**.

Power Density:

The power density, in the units of power per unit mass, designates the maximum power that can be supplied (in/out) of the power unit per unit weight. It controls the vehicle **performance**.

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Why IC Engine and Fossil Fuels?

The internal combustion engine still today has the best *combination of specific energy and power*

History of Energy Consumption in USA

THE OHIO STATE UNIVERSITY

History of Energy Consumption in USA

United States' Energy Use in 2011

Source: LLNL 2012. Data is based on DOE/EIA-0384(2011), October, 2012. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports flows for non-thermal resources (i.e., hydro, wind and solar) in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 80% for the residential, commercial and industrial sectors, and as 25% for the transportation sector. Totals may not equal sum of components due to independent rounding. LUNL-MI-410527

10

A Decade Later ... United States' Energy Use in 2022

Source: LIML July, 2023. Data is based on DOK/KIA SEDS (2021). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in STO-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 0.65% for the residential sector, 0.62% for the transportation sector. Totals may not equal sum of components due to independent Rounding, LIM-MH-410527

Snapshot Today

U.S. primary energy consumption by energy source, 2021

eia Note: Sum of components may not equal 100% because of independent rounding.

Snapshot Today

2019 U.S. GHG EMISSIONS

Source: THE U.S. NATIONAL BLUEPRINT FOR TRANSPORTATION DECARBONIZATION A Joint Strategy to Transform Transportation, 2023, https://www.energy.gov/eere/us-national-blueprint-transportation-decarbonization-joint-strategy-transform-transportation.

Primary Energy Consumption in Europe

Europe's energy import is 5 times higher than the renewable production What is the solution of energy import for the future?

Source: IHS, Eurostat, IEA Statistiken, BP Statistical Review, Nationale Statistiken, EU Reference Scenario 2016, Porsche AG

Prof. Dr.-Ing. André Casal Kulzer, Institute for Automotive Engineering, University of Stuttgart

Green Growth Strategy of JAPAN (METI)

CN scenario for transportation of Green Growth Strategy presupposes a combination of three paths; ①Electrification ②Hydrogen Utilize ③IC engines with CN Fuel

Source : METI "Green Growth Strategy Through Achieving Carbon Neutrality in 2050" Formulated

AICE

2023 JSAE/SAE Powertrains, Energy and Lubricants International Meeting

Pathways toward Carbon Neutrality

 According to the world trend toward CN, following three paths seems to be realistic as zero emission society by 2050;

1) Battery Electric Vehicle, 2) Hydrogen (FCV or H₂-ICE), 3) ICE with CN fuel

- Pathways are as following;
 - As renewable electricity ratio increasing, BEV expanding
 - 2. Excess electricity stored as hydrogen (PtX), and applied to FCV and H₂-ICE
 - 3. CN fuel produced with hydrogen and captured CO₂, CN for ICE vehicles

Carbon Based Energy Sources

Non-Carbon Based Energy Sources

Well-to-Wheels Analysis

THE OHIO STATE UNIVERSITY

Source: adapted from Guzzella and Sciarretta "Vehicle Propulsion Systems - Introduction to Modeling and Optimization", 2007 19

Petroleum has fueled transportation for 100 years...

... what next?

1918, first gasoline delivery truck at OSU

The Ohio State University Archives

20

Electric Vehicle Technology

21

It's More Than Just the Battery!

- We will discuss challenges related to the development of power electronic systems, electric machines, and the integration of e-propulsion systems.
- These subsystems, highlighted in the figure below, represent over 20% of the total cost of a BEV.
- If EVs are to be successful in the market, we must get these right...

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Power Electronics

Electric Machines

Drivetrain Integration

Technical Targets (Proposed DOE VTO)

Year	2025	2030	2035	
Peak Power Level (kW_peak)	100	150	225	
Voltage (V)	600	800	800	
Cost (\$/kW_peak)	6	4	2.67	
Power Density (kW_peak/L)	33.3	50	75	

Electric Drive

Power Electronics

Year	2025	2030	2035
Cost (\$/kW_peak)	2.70	1.80	1.20
Power Density (kW_peak/L)	100	150	225

Electric Motor

Year	2025	2030	2035
Cost (\$/kW_peak)	3.30	2.20	1.47
Power Density (kW_peak/L)	50	75	112.5

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Emissions of Electric Vehicles

27

Electricity?

- Infrastructure already exists (home charging).
- Lowered cost per vehicle mile.
- Can use renewable energy, driving demand for renewables.

The Carbon Cost of Charging EVs

TVA example (one of the better ones)

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Total electricity consumption by source

Total carbon emissions by source

Emissions in the last 30 days

🛃 Get hourly historical, live, and forecast data with Electricity Maps API

The Carbon Cost of Charging EVs

When a consumer is asking for more electricity, that additional electricity will come from the cheapest power plant that still has spare capacity at that time. This power plant is called the **marginal power plant**.

Typically, the marginal plant is a system that can react quickly to changes in electricity demand, such as a gas turbine. It however cannot be a wind turbine or solar panels, as you can't command them to produce more.

Merit Order Curve:

Generation systems are called upon in a specific order of increasing cost (in order to minimize overall cost).

https://www.electricitymaps.com/blog/marginal-carbon-intensity-of-electricity-with-machine-learning

Burton, T., Powers, S., Burns, C., Conway, G. et al., "A Data-Driven Greenhouse Gas Emission Rate Analysis for Vehicle Comparisons," SAE Int. J. Elect. Veh. 12(1):91–127, 2023, doi:10.4271/14-12-01-0006.

The Carbon Cost of Charging EVs

Charging an electric vehicle at a given time, will cause the marginal plant to produce more, and therefore, charging will be responsible for the carbon emissions associated to it. Those emissions are called **marginal carbon emissions**.

Contiguous U.S. Grid Interconnections

To attribute carbon emissions, we need to trace back the area that generated the marginal electricity.

31

https://www.electricitymaps.com/blog/marginal-carbon-intensity-of-electricity-with-machine-learning

Burton, T., Powers, S., Burns, C., Conway, G. et al., "A Data-Driven Greenhouse Gas Emission Rate Analysis for Vehicle Comparisons," SAE Int. J. Elect. Veh. 12(1):91–127, 2023, doi:10.4271/14-12-01-0006.

Petroleum has fueled transportation for 100 years...

...what next?

1918, first gasoline delivery truck at OSU

The Ohio State University Archives

32

IEA 2021 Report: Worldwide Global Pathway to Net Zero CO₂ by 2050

Sustainable mobility will be possible by electrification + renewable fuels_{CO2-neutral}

Figure 3.22 Global transport final consumption by fuel type and mode

in the NZE global pathway to net-zero CO₂ emissions in 2050

Source: International Energy Agency, 2021 Report *renewable Fuels: CO2-neutral bioFuels and eFuels

Note: LDVs = Light-duty vehicles; Other road = two/three wheelers and buses.

Global Fossil Energy Trading System

CENTER FOR AUTOMOTIVE RESEARCH

Courtesy: Prof. Dr.-Ing. Michael Bargende

Source(s): BP Statistical Review of World Energy 2021, AVL, Prof. Dr. Uwe Grebe 34

Global Energy Trading System in the Future

Which energy carriers have a chance in the future for a global transport of energy?

THE OHIO STATE UNIVERSITY

"Green" Production Paths for Synthetic Fuels (Ptx)

Courtesy: Prof. Dr.-Ing. Michael Bargende

Source(s): Öko-Institut e.V., 2020

Candidates to Become Future Energy Carriers

Positive and negative aspects due to efficiency, infrastructure and suitability as a fuel

Hydrogen (H₂) Synthetic

Positive:

• No C Atom (no CO₂ emissions when burnt)

Negative:

THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH

- Transport only liquid (LH₂) with efficiency losses
- High material demands
- High laminar burning speed

Ammonia (NH_3) Synthetic from H_2

Positive:

- No C atom (no CO₂ emissions when burnt)
- Is already produced in larger quantities

Negative:

٠

- Transport only liquid with efficiency losses (much lower than H₂)
- Low energy density
- Low ignitability

LNG (CH₄) Synthetic from H₂

Positive:

- Infrastructure exists (Ships, terminals and grid)
- Relatively high energy density

Negative:

- CO₂ emissions when burnt
- Transport only liquid with efficiency losses (lower than H₂)

Methanol (CH₃OH) Synthetic from H₂

Positive:

- Liquid (only very low efficiency losses due to transportation)
- Infrastructure exists (gas stations)
- High laminar burning speed

Negative:

- CO₂ emissions when burnt
- Low energy density

Source(s): https://www.offshore-energy.biz/worlds-1st-lh2-carrier-suiso-frontier-departs-for-australia/, https://www.en-former.com/en/is-ammonia-the-future-of-shipping/, https://marine-digital.com/article 10biggest lng shipping companies, https://www.globaltrademag.com/methanol-carrier-cajun-sun-delivered/_____

Courtesy: Prof. Dr.-Ing. Michael Bargende

eFuels: Porsche and Siemens Energy Step Forward

Porsche and Siemens Energy step forward: Haru Oni – a Project of HIF (Highly Innovative Fuels)

From 2026 on: 1,3 million tons CO₂ saved per year

Pilot plant for technology verification of the interlinked process steps:

- Technology path: From power supply to finished eGasoline.
- Process steps: Wind power, direct air capture, electrolysis, methanol, synthesis, gasoline synthesis.

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Courtesy: Prof. Dr.-Ing. Michael Bargende

Passenger Cars In The World

Number and production of all cars on earth

1.434.500.973

In **2030**, if the rate of increase remains the same, the world's car population will increase to **1.6 billion**.

2.7 billion cars by 2050? According to the latest studies, there will be up to 2.7 billion cars on earth in 2050.

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

Status: Oct. 19, 2023 at 13:35 at http://live-counter.com

Courtesy: Prof. Dr.-Ing. Michael Bargende

Conclusion: Reaching GHG Neutrality

 THE OHIO STATE UNIVERSITY
 Courtesy: Prof. Dr.-Ing. Michael Bargende

 CENTER FOR AUTOMOTIVE RESEARCH
 Courtesy: Prof. Dr.-Ing. Michael Bargende

Electrification Enabling Technologies

Keynote presentation

Giorgio Rizzoni, The Ford Motor Company Chair In Electromechanical Systems Professor, MAE and ECE Departments, The Ohio State University OCT. 24, 2023 CHATTANOOGA, TN

SCIPII

