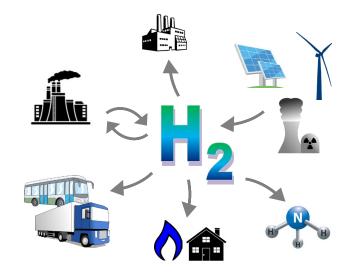


The Transition To Hydrogen Engineering the Future of Hydrogen Infrastructure

Presented by Paul Eiden, P.E. November 15th, 2022

Sargent & Lundy



Hydrogen Infrastructure

The Hydrogen Build-Out

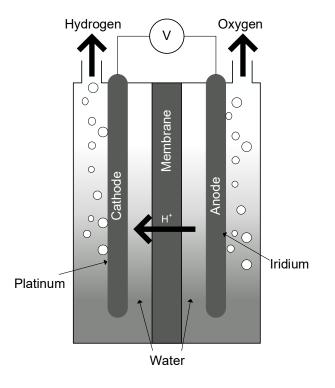
- Start with Safety
 - ➤ Leakage
 - Flammability
 - > High Pressure
 - Material Embrittlement
 - End User Capabilities and Condition Assessments

Hydrogen Codes and Regulations

- National Fire Protection Association (NFPA)
 > NFPA 2 Hydrogen Technologies Code
 > NFPA 70 and 497 for Hazardous Area Classification
- American Society of Mechanical Engineers (ASME)
 > ASME B31.12 Hydrogen Piping and Pipelines
- Compressed Gas Association
 CGA G-5.5 Standard for Hydrogen Vent Systems
- Federal Requirements (Volumes > 10,000 lb)
 > OSHA Process Safety Management Plan (PSM)
 > US EPA Risk Management Plan (RMP) for Offsite Consequence Analysis
 > Chemical Facility Anti-Terrorism Standards (DHS)

Designing for Safety

- Ventilation
 - Minimize Hydrogen Concentration in Case of Leakage
 - Venting Hydrogen to Safe Locations
 - Relief Systems
 - Purging
 - Redundancy
- Leak Detection
 - Emergency Shutoff Systems
- Spacing
 - Physical Standoff Distances
 - Volume and Pressure Dependent
- Hazardous Area Classifications
 - > Class 1, Division 1 or 2, Group B (for pure hydrogen)


HAZOP / LOPA

Hazard and Operability Analysis Layers of Protection Analysis

Hydrogen Production

- The New Hydrogen Demand
 - Production methods that minimize CO₂ emissions
 - \circ Electrolysis
 - Carbon capture on traditional methods
 - Methane pyrolysis, thermochemical water splitting, and more
 - Scale-Up of Manufacturing
 - > Efficiency Improvements
 - Technology advancements
 - $_{\circ}$ Reduce cost of electricity
 - > Purity Requirements

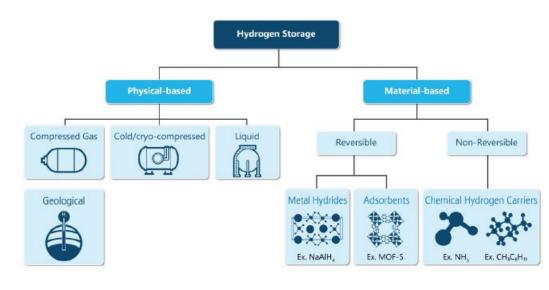
Hydrogen Facility Siting

- Site Selection
 - Feedstock Availability
 - > Electrical Interconnect
 - > Footprint
 - \circ System size
 - o Storage
 - > Offtake / Use
 - Permitting

Source: Sargent & Lundy

Hydrogen Transport

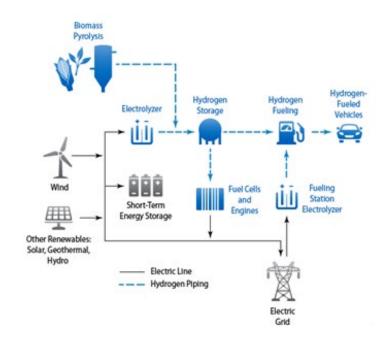
- Trucking
 - > High Pressure Gas
 - Liquid
- Hydrogen Pipeline Network
- Alternate Hydrogen Carriers
 > Ammonia, Methanol, Others
- Blending with Natural Gas
 - > At point of use
 - > Utility scale
 - Energy Content Reduction



Source: DOE

Hydrogen Storage

- Storage Media Factors
 - Locations of production and use
 - Duration
 - Space
 - Energy for compression or synthesis
 - Offtake and operating basis
- Compressed Gas
 - Vessels (above and below ground)
 - Geologic formations (i.e., salt caverns)
- Cryogenic / Liquid Hydrogen
- Metal Hydrides
- Liquid Ammonia (& other chemical carriers)



Aligning the Supply Chain

- Connecting New Producers with New Users
 - Emphasis on safety
 - >Adoption across new industries and uses
 - Reductions in cost of hydrogen
 - Development of distribution networks
 - Support decarbonization goals

