

Johnson Matthey

Working together to build the new hydrogen economy

Strong credentials supporting our strategy and vision for a cleaner and healthier world

Where we Operate

13,400 employees worldwide

North America

11 major manufacturing facilities
27% of Group sales*
19% of employees

🔵 Europe

15 major manufacturing facilities
41% of Group sales*
59% of employees

Rest of World

4 major manufacturing facilities
7% of Group sales*
5% of employees

6 major manufacturing facilities

13% of Group sales* 8% of employees

🔵 Rest of Asia

🔵 China

4 major manufacturing facilities9% of employees

Science and metal expertise is at the heart of the group

Leaders in complex metal chemistry

Developed over decades; hard to replicate

Synergies across the group

Key to many technologies tackling climate change

Note: 2020/21 figures. UN SDGs – United Nations Sustainable Development Goals

>1,600 R&D employees

87% Gross R&D spend contributing to 4 UN SDGs

JM delivers value across all areas of the hydrogen value chain

Hydrogen Technologies

Enabling the hydrogen transition with cuttingedge science and sustainable technologies

Performance components for fuel cells & electrolysers

- High-performance catalyst coated membranes (CCM) and membrane electrode assemblies (MEA)
- Only backward integrated supplier
- R&D programme and roadmap to deliver next generation performance

Industrialised and secure supply chain

- Existing 2GW production capacity on the ground delivering product today
- Investments in future capacity planned globally in-line with customer demands
- Integrated supply chain helping secure key raw materials

Embedding circularity principles

- Significant sources of secondary PGMs, reducing the carbon impact of CCMs
- Refining Ir and Pt today and developing closed loop recycling systems and technology
- Advanced manufacturing processes that minimise waste materials

Underpinned by unique capabilities

- State of the art in-house testing capabilities and capacity for single cells and stacks
- Dedicated technical and programme support from design and sample, to scale up
- PGM management, financing options and global insights

Hydrogen Technologies manufacturing capability

Well positioned with production capacity on the ground and plans to invest

- Opened in 2002 as first ever dedicated CCM and MEA manufacturing facility
- 2GW of CCM production capacity
- Also serves as a competence centre for scaling production capability globally
- Opened in January 2021
- Capacity to make 4 million MEA components per year
- Plans to invest in development, testing and production capability in China
- Due to open in H1 2024 at existing JM site
- Capacity to produce 3GW of CCMs annually
- Possibility to triple capacity in future with flexible, modular layout

7

JM

Proton exchange membrane (PEM) fuel cell offer

JM experience in electrochemical value chain is comprehensive

Technology

Improved membranes and interfaces

Improved cathode electrodes

Improved anode electrodes

Advanced manufacturing

Building strong collaborative partnerships for success

¹ Passenger car focused fuel cell programmes. ² Stack volumetric power density including end plate. 6.6 kW/L was achieved on the cell block.

Ionomer, reinforcement, and membrane

Manufacture of membranes in-house allows **JM** to tailor membrane by altering **ionomer selection**, **additive levels**, **reinforcement type** and **thickness** to suit certain application use cases

Example from membrane programmes:

	Thickness (µm)	Reinforcement	Chemical Stabilisation
V5+	15	ePTFE	Y
V10i	15	ePTFE	Y
V11	15	ePTFE	Y
V12	15	ePTFE	Y
Alternative Mem	15	Alternative	Y

Catalyst support and catalyst design

JM influences catalyst properties by altering **carbon support**, **location of Pt** and **metal loading** to suit certain application use cases

Example from catalyst programmes:

JM selected a support material with strong ionomer-support interaction, improved corrosion resistance and sufficient pore structure for improved mass transfer.

Cathode:

- Automotive Pt/C
- · Catalyst support for higher current densities
- Low loaded Pt/Co alloy
- High loaded Pt/Co alloy

Anode:

- CRT (Cell Reversal Tolerant)
- Non-CRT
- CO tolerant

Iridium 90% reduction for FC Cell Reversal Tolerance

Performance shown at 1.2A/cm2 operating current density

Confidential 13

Performance Data

JM components deliver world-leading performance and power density

Next generation manufacturing

Increasing green manufacturing capacity and performance of part

Direct-to-membrane

Direct to Membrane coating (DTM) is the next leap forward from decal-transfer

- Improved quality CCM with better interactions between the layers
- More efficient, greener production process

BOL Performance comparison

*Results are stack and operating conditions dependant

- Improved performance seen across the polar curve for DTM material with increased kinetics and reduced resistance.
- Humidity sweep shows performance benefits from cold-wet through to hot-dry conditions.

