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What are Artificial Intelligence (Al) and
Machine Learning (ML)

« Definition 1: The scientific understanding of the mechanisms underlying thought and
intelligent behavior and their embodiment in machines. (AAAI)

» Definition 2: Computers trained to perform tasks that if performed by a human would
be said to require intelligence

» Definition 3: A class of data analytics algorithms in which the rules and/or models are
not known a priori and are learned as part of the process

Synthetic
data
Training
data

Real data

\ 4

Create Rules/Models Rules/
Learning/Training Model
Evaluation/ Decision/Prediction/
Inference Classification/Design
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I ¥O0akRIDGE  An Al Taxonomy

Classification and Surrogates Inverse problems, Control systems
regression design and
optimization

Near Infrared (single band) WorldView-3 image

\ CODA cloud detection saliency map for image above )




Six Research Areas Crosscut the Taxonomy

Data quality and statistics
- Even if we have enough data, it is not necessarily good data
- Dealing with bias

* Machine learning

— Needs to accelerate
- Very model dependent (
] ) Data
e Merging physics and Al -\
4

- We can't violate the laws of physics
— Characterizes ORNL data

V(\gorklﬂow ot Learning
- Verification, validation and explainability =SVEEE 4'—1

- Is the answer right, is the model

appropriate, and can we understand it I
- What is the human-computer interface " Physics
Scalability informed or
. constrained
« Computing ﬁ _

- How do we use “big” computers

— How do we use accelerated nodes V&V, UQ and
Explainability

« Workflow and deployment
- Computing at the edge
- privacy, ethics and regulations
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Use case: Al In materials science

Defect detection

Experimental
image
2 types .of Model
vacganciles output
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Inverse problems

Interface structure
classification

CBED (convergent beam
electron diffraction)

3D Convolutional Dense Softmax

‘ Step/Diffuse
Classification

5
N umber of Fi ]l units

Process control

-50 0

» Design and control of thin-film
heterostructures

* Prediction of growth conditions
and control of trajectory



Building and exploring libraries of atomic defects in
graphene

« STEM generates large amounts of data (GB to TB
range per single experiment)

« Atomic positions are key for understanding atomic-
scale processes in materials

« Current state-of-the-art approaches for atom/defect

identification are slow and frequently fail for noisy
data

Building and exploring libraries of atomic defects in graphene

STEM experiment

Defect identification Calculated electronic
(measures local structure)

Scanning Tunneling Microscope (STM)
, structure (measures local electronic properties)

y L

Deep
learning

Search in
STM data
E2

; [;L‘

M. Ziatdinov, O. Dyck, B. G. Sumpter, S. Jesse, R. K. Vasudevan, S. V. Kalinin. Building and exploring libraries
of atomic defects in graphene: scanning transmission electron and scanning tunneling microscopy study.
ArXiv:1809.04256 (2018)

S_QOAK RIDGE

National Laboratory




Physics-based Inverse Problems

Simulated Data
Example 1
Cantilever Trajectory — ™
for f(z) inference, |

towards Mechanical
Properties

~F(x)
Overarching Goal: DL Inverse Solution Engine

e
Deep Learning

®

@

Example 2

RHEED Patterns
for Surface
Structures

Example

. . . Input
. . . . . Hidden

Layers

([ 000000
e O0000®
Descriptors . . . Output

High Dimension
Simulation Results

CBED

at Interfaces 0 - . >
for Structure [ SIS
and ‘¢ I
Chemistry

Forward Simulation :
Simulations Inputs I

Validation Phase

Structure and

Chemistry from
Experimental Results!!
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Reflection High Energy Electron Diffraction (RHEED)

Reflection High Energy Electron Diffraction (RHEED) is an indispensable technique
to monitor film properties (thickness, surface ordering, etc.) during growth by pulsed
laser deposition (PLD) or Molecular Beam Epitaxy (MBE)

t: Coverage rate on Prooess image Temporal change in
growing surface (Stucking atoms / e-beam) brightness of specular spot
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Surrogates

e Surrogates

- When fraditional mod-sim is too expensive (e.g., Tensor Input

when many function evaluations are needed, such Layer T*"
as in ensembles) @
—  When working across scales (e.g., TBNNS have baen used To @
turbulence closure) enforce physical constraints e || |Merge Output
’ . (e.g., invariances) in furbulence - Laver b
- When we don’'t have physics-based modﬂmfg and n ﬁefvelorgg% e
. . constitutive mogagels 1or a Ifive 3
models (e.g., some bio-science manufacturing
problems, or fracture prediction)

- To steer computations

N
« Some examples where surrogates have ¥ 7
been useful % s |f
- Constitutive models, e.g., for additive "\a |
manufacturing %
- Turbulence models Invariant .
I L Final Hidden
T:?tax:r Hidden Layers . .. gt

« Surrogates can often be trained with
synthetic data. But they are still models that b=73 g™ (... A5) T
need to be validated. Uncertainties need
to be computed.
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Enabled by HPC

* \We have the ability to collect and store large amounts
of data

« Computational power continued to increase, with
architectural improvements that are amenable to
neural networks

— For example, GPU became practical for
accelerated computations.

— Reduced-precision tensor core
units are included
Summit: 10x Titan

Hybrid GPU/CPU

Titan: 27 PF 13 MW

Hybrid GPU/CPU
Jaguar: 2.3 PF 9 MW

Multi-core CPU CORAL System
7MW

==

Exascale OLCF5: 5-10x
Summit
~20 MW

2010 2012 2017 2021
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I XRUERS Summit Overview Eﬁl{'l',\ﬂ‘Tlt

Summit includes Each node has System Performance

» 4608 nodes 2 IBM POWER®9 processors Peak performance of 200
« Dual-rail Mellanox EDR 6 NVIDIA Tesla V100 GPUs grfjolg?lg; for modeling &
InfiniBand network U

- Peak of 3.3 ExaOps for data
« 250 PB IBM Spectrum Scale . ’ g
file system transferring data at eI CIFINRAN (S ISR analytics and artificial

2.5TB/s intelligence

608 GB of fast memory

w w
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6.0 GB/s Read
2.2 GBfs Write
TF 42 TF (6x7 TF) -4+—p» HBM/DRAM Bus (aggregate B/W)
HBM 96 GB (6x16 GB) ~—» NVLINK
DRAM 512 GB (2x16x16 GB) ~4—= X-Bus (SMP)
NET 25 GB/s (2x12.5 GB/s) ~i— PCle Gen4
MMsg/s a3 -+—» EDR IB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCle, I1B) are bi-directional.




NVIDIA's tesla v100

» 5,120 CUDA cores (64 on each of 80 SMs)

» 640 NEW Tensor cores (8 on each of 80 SMs)

« 20MBSMRF | 16MB Cache | 16GB HBM2 @ 900 GB/s
« 300 GB/s NVLink

« 7.5 FP64 TFLOPS | 15 FP32 TFLOPS | 120 Tensor TFLOPS

« ~57 times faster in 64-bit peak floating point performance
than the CM-5 we worked on 25 years ago

« >27K of these coming on ORNL’s Summit system!

* Mixed precision maftrix math 4x4 matrices

| Type Size | Range | u=271
half 16 bits  10*° 2" ~49x10™*

single 32 bits  10*38 224 .60 % 108
double 64 bits 10™3%® 28 11 x 107'¢

quadruple | 128 bits  10+4%2  2-113 9.6 x 1073°

D=

FP16 or FP32 FP16 or FP32

D=AB +C
« The M&S community must figure how out to “cheat” and utilize mixed / reduced precisions

« Ex: Jack Dongarra shows he can get 4x FPé4 peak for 64bit LU on V100 with iterative mixed
precision (using GMRES!)
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Using Tensor Cores is key to high performance

« MENNDL is the kernel of one of our
Gordon Bell finalists

— Determines optimal
hyperparameters for a DNN

— Relatively easy to parallelize

— Effectively demonstrates the power
of the Tensor core units (as well as
the challenge of using them)

* Mixed precision presents
algorithmic challenges

— What accuracy is actually needed
for simulations

— Performance must now be
correlated to accuracy

OAK RIDGE
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Application Performance (PetaFLOPs)

167.077 -
152.548 ~

74.385

37.193 ¢

18.596 +

9.298 1

4.649

= Mean mixed precision performance (u)
s +50

V¥ Measured
Y Projected

— Single Precision
(4=5.039, 0=1.725)

Mixed Single/Half Precision
(4=6.053, 0=2.701)
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Travis Johnston, ORNL



A Good Infrastructure Is Required To Manage Data

Data On-Ramps:
Observational Data
Scalable
Computing

Facilities

Workflows:
Staging and
Cross-System and

Cross-Facili

Capability Compute at OLCF:

Simulation &
Compute/Data Workflows at
Scale

Data Life-Cycle:
Dissemination,
Sharing, Analytics
Products

;_V(,OAK RIDGE

National Laboratory




%

OAK RIDGE

National Laboratory

Issue: “Syntactic” Space vs. “Semantic” Space

 Humans tend to think in semantic space, i.e., in terms of the
meaning.

And metrics in semantic space are fundamentally different from
those in syntactic space

* Implications
— Easy to spoof classification systems

— Transfer learning doesn’t map well. (Humans tend to transfer learning in
semantic space, e.g., transfer what | learned about human behavior in
kindergarten to how | drive. Most Al approaches transfer in syntactic space or
transfer parts of the model (a sort of “gene transfer”).



Issue: Uncertainty Quantification

- An Al is simply a model and has uncertainty.
UQ can also enhance explainability and /" inversa tncertainly quenicatonprotiem ~
/

__________________________________________

SUpporT d@ClSlOﬂ mleng. [ !/’ classic machine learning problem ™. \
I ‘i
| ! interpretation & model model fit : |
| decision making structure criteria '

- Types of UQ I N
) |

. . | 1 statistical - 1|

» Uncertainty propagation | infomed sate ¢_SPProximate  model | _input WU |

| : © inference induction regularization (@) : |

. . . | (c) v

- Calibration uncertainty ot @ s ® t

[ N R L . A

| 1 i 1 1 1 |

solution _ inference J model form U regularization measurement

° BCIyeSiCIﬂ meThOdS/VOI’iOﬂOﬂC” inference \\ uncertainty errors uncertainty effects O errors
common, but are computationally = TToommm oo
expensive.
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Issue: Verification, Validation, Explainability and
Interpretabillity

* Interpretibility

A
2
— Can a human understand the model? For example, do CEB
the basis vectors in a dimension reduction algorithm 15
have a physical meaning? =
£
« Explainability
— Can the model present a sequence of steps —
that can justify the answer to an expert? Complexity
- Expert based
« Reproducibility =
(2]
— Does the same experiment lead to the same E -
conclusion? 51| 2
O Ke}
— Can we run different experiment and not contradict our ] IR
conclusion?
- If we create a new model with the same data, do we
get the same conclusions? >
— Required for good science Evidence base
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Issue: Verification, Validation, Explainability and
Interpretability

e Verification

- Is the model implemented correctly?

« Validation
- Is the model (including training data) appropriate for the decisions being made?
— Must be evidence based
- Requires some form of UQ, robustness guarantees and bounds on “distortion”

/ Traditional physics-based HPC \

Analysis

N /
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Issue: Verification, Validation, Explainability and
Interpretability

e Verification

— Is the model implemented correctly?

« Validation
— Is the model (including training data) appropriate for the decisions being made?
— Must be evidence based
— Requires some form of UQ, robustness guarantees and bounds on “distortion”

LIDAR CNN Firmware/OS Robot \

System
Software

. Probabilistic Probabilistic

Constraints contracts on Al correctness

on data components guarantees j
Probabilistic
Probabilistic Non- Hybrid
Programs deterministic Automata
Automata

Physical

Al Program System

/
SYSTEM Data
N

High-
ABSTRACTIONS dimensional

data
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Issue: Data Is A Major Problem

 Need more data than was imagined just a few
years ago

— We are looking for complex correlations
— Using primatrily statistical methods

» Labelled data is a problem

— Generating labels is expensive and labor intensive
(e.g., Mechanical Turk)

— Need to move toward reinforcement learning

* Synthetic data and simulated environments are
partial solutions

— But an Al can learn the flaws in these systems
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Issue: Al Is An Art

« Choosing the model form and hyper parameters is often ad-hoc
and requires experience and insight

« Al models must be tuned
* Neural networks design is difficult and often requires tuning

 Interpreting the results requires expertise

“Machine learning methods are often
described in papers at an abstract level,
for maximum generality. However, a
good choice of hyperparameters is
usually necessary to make them work
well on real-world problems, and tricks
are often used to make most efficient
use of these methods and extend their
capabilities.”

G. Montrevan, et.al., “Methods for Interpreting and
Understanding Deep Neural Networks.”
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Summary: Observations and Issues

» Al is effective for narrowly defined tasks and only identifies correlations in
(complex) data

» Access to and availability of “good” and “labelled” data is one of the biggest
challenges for Al

 We need a sustainable data and compute infrastructure
» While we have big machines, we don’t have scalable algorithms

* Vulnerability threats for Al (hacking, intentional manipulation) are a huge
concern for deployment

« We don’t know how to do validation

« HCI is an important component of the workflow, including explainability and
interpretability

» Deployment of Als introduces a whole new set of challenges

* Need to understand the ethics and human impact
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