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What are Artificial Intelligence (AI) and 
Machine Learning (ML)

• Definition 1: The scientific understanding of the mechanisms underlying thought and 
intelligent behavior and their embodiment in machines. (AAAI)

• Definition 2: Computers trained to perform tasks that if performed by a human would 
be said to require intelligence

• Definition 3: A class of data analytics algorithms in which the rules and/or models are 
not known a priori and are learned as part of the process  
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Classification and 
regression

Surrogates Control systems

An AI Taxonomy

Inverse problems, 
design and 
optimization

Near Infrared (single band) WorldView-3 image

CODA cloud detection saliency map for image above
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Six Research Areas Crosscut the Taxonomy

• Data quality and statistics
– Even if we have enough data, it is not necessarily good data
– Dealing with bias

• Machine learning
– Needs to accelerate
– Very model dependent

• Merging physics and AI
– We can’t violate the laws of physics
– Characterizes ORNL data

• Verification, validation and explainability
– Is the answer right, is the model 

appropriate, and can we understand it
– What is the human-computer interface

• Computing
– How do we use “big” computers
– How do we use accelerated nodes

• Workflow and deployment
– Computing at the edge
– privacy, ethics and regulations
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Inverse problems Process controlDefect detection

Use case: AI in materials science 
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• Design and control of thin-film 
heterostructures

• Prediction of growth conditions 
and control of trajectory
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Building and exploring libraries of atomic defects in 
graphene

• STEM generates large amounts of data (GB to TB 
range per single experiment)

• Atomic positions are key for understanding atomic-
scale processes in materials

• Current state-of-the-art approaches for atom/defect 
identification are slow and frequently fail for noisy 
data

Building and exploring libraries of atomic defects in graphene

M. Ziatdinov, O. Dyck, B. G. Sumpter, S. Jesse, R. K. Vasudevan, S. V. Kalinin. Building and exploring libraries 

of atomic defects in graphene: scanning transmission electron and scanning tunneling microscopy study. 
2018)

STEM experiment 

(measures local structure)
Defect identification Calculated electronic 

structure
Scanning Tunneling Microscope (STM)

(measures local electronic properties)
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Physics-based Inverse Problems
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Reflection High Energy Electron Diffraction (RHEED)

www.pascal-co-ltd.co.jp
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Reflection High Energy Electron Diffraction (RHEED) is an indispensable technique 
to monitor film properties (thickness, surface ordering, etc.) during growth by pulsed 
laser deposition (PLD) or Molecular Beam Epitaxy (MBE)

Example of two different 
island morphologies

Example image of 

one island cell
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Surrogates

TBNNs have been used to 
enforce physical constraints 
(e.g., invariances) in turbulence 
modeling and in developing 
constitutive models for additive 
manufacturing 

• Surrogates 

– When traditional mod-sim is too expensive (e.g., 
when many function evaluations are needed, such 
as in ensembles)

– When working across scales (e.g., 
turbulence closure)

– When we don’t have physics-based 
models (e.g., some bio-science 
problems, or fracture prediction)

– To steer computations 

• Some examples where surrogates have
been useful

– Constitutive models, e.g., for additive 
manufacturing

– Turbulence models

• Surrogates can often be trained with 
synthetic data.  But they are still models that 
need to be validated.  Uncertainties need 
to be computed.
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Enabled by HPC

• We have the ability to collect and store large amounts 
of data

• Computational power continued to increase, with 
architectural improvements that are amenable to 
neural networks

– For example, GPU became practical for 
accelerated computations.

– Reduced-precision tensor core 
units are included

CORAL System
Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

2010 2012 2017 2021

Exascale OLCF5: 5-10x 
Summit
~20 MW

Summit: 10x Titan
Hybrid GPU/CPU
13 MW
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Summit includes

• 4608 nodes

• Dual-rail Mellanox EDR 
InfiniBand network

• 250 PB IBM Spectrum Scale 
file system transferring data at 
2.5 TB/s

Each node has

• 2 IBM POWER9 processors

• 6 NVIDIA Tesla V100 GPUs

• 608 GB of fast memory

• 1.6 TB of NVMe memory

System Performance

• Peak performance of 200 
petaflops for modeling & 
simulation

• Peak of 3.3 ExaOps for data 
analytics and artificial 
intelligence

Summit Overview
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NVIDIA’s tesla v100

• 5,120 CUDA cores (64 on each of 80 SMs)

• 640 NEW Tensor cores (8 on each of 80 SMs)

• 20MB SM RF  |  16MB Cache  |  16GB HBM2 @ 900 GB/s

• 300 GB/s NVLink

• 7.5 FP64 TFLOPS | 15 FP32 TFLOPS | 120 Tensor TFLOPS

• ~57 times faster in 64-bit peak floating point performance 
than the CM-5 we worked on 25 years ago

• >27K of these coming on ORNL’s Summit system!

• Mixed precision matrix math 4x4 matrices

• The M&S community must figure how out to “cheat” and utilize mixed / reduced precisions

• Ex: Jack Dongarra shows he can get 4x FP64 peak for 64bit LU on V100 with iterative mixed 
precision (using GMRES!)
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Using Tensor Cores is key to high performance

• MENNDL is the kernel of one of our 
Gordon Bell finalists

– Determines optimal 
hyperparameters for a DNN

– Relatively easy to parallelize

– Effectively demonstrates the power 
of the Tensor core units (as well as 
the challenge of using them)

• Mixed precision presents 
algorithmic challenges

– What accuracy is actually needed 
for simulations

– Performance must now be 
correlated to accuracy

Travis Johnston, ORNL



1414

A Good Infrastructure Is Required To Manage Data

Facilities

Capability Compute at OLCF:

Simulation &

Compute/Data Workflows at 

Scale

Data Life-Cycle:

Dissemination, 

Sharing, Analytics 

Products

Workflows:
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Cross-System and 

Cross-Facility

Analytics:

Analysis at Scale

Visual Analytics

Data On-Ramps: 

Observational Data

Scalable 

Computing



1515

Issue: “Syntactic” Space vs. “Semantic” Space

• Humans tend to think in semantic space, i.e., in terms of the 
meaning.

And metrics in semantic space are fundamentally different from 
those in syntactic space

• Implications 

– Easy to spoof classification systems

– Transfer learning doesn’t map well.  (Humans tend to transfer learning in 
semantic space, e.g., transfer what I learned about human behavior in 
kindergarten to how I drive.  Most AI approaches transfer in syntactic space or 
transfer parts of the model (a sort of “gene transfer”).
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Issue: Uncertainty Quantification

• An AI is simply a model and has uncertainty.  
UQ can also enhance explainability and 
support decision making. 

• Types of UQ

• Uncertainty propagation

• Calibration uncertainty

• Bayesian methods/variational inference 
common, but  are computationally 
expensive.  
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Issue: Verification, Validation, Explainability and 
Interpretability

• Interpretibility

– Can a human understand the model?  For example, do 
the basis vectors in a dimension reduction algorithm 
have a physical meaning?

• Explainability

– Can the model present a sequence of steps 
that can justify the answer to an expert?

– Expert based

• Reproducibility

– Does the same experiment lead to the same 
conclusion?

– Can we run different experiment and not contradict our 
conclusion?

– If we create a new model with the same data, do we 
get the same conclusions?

– Required for good science

•
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Issue: Verification, Validation, Explainability and 
Interpretability

• Verification

– Is the model implemented correctly?

• Validation

– Is the model (including training data) appropriate for the decisions being made?

– Must be evidence based

– Requires some form of UQ, robustness guarantees and bounds on “distortion”

Analysis 

Code
Model

Traditional physics-based HPC
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Issue: Verification, Validation, Explainability and 
Interpretability

• Verification

– Is the model implemented correctly?

• Validation

– Is the model (including training data) appropriate for the decisions being made?

– Must be evidence based

– Requires some form of UQ, robustness guarantees and bounds on “distortion”
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Issue: Data Is A Major Problem

• Need more data than was imagined just a few 
years ago

– We are looking for complex correlations

– Using primarily statistical methods

• Labelled data is a problem

– Generating labels is expensive and labor intensive 
(e.g., Mechanical Turk)

– Need to move toward reinforcement learning

• Synthetic data and simulated environments are 
partial solutions

– But an AI can learn the flaws in these systems
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Issue: AI Is An Art

• Choosing the model form and hyper parameters is often ad-hoc 
and requires experience and insight 

• AI models must be tuned 

• Neural networks design is difficult and often requires tuning

• Interpreting the results requires expertise

“Machine learning methods are often 
described in papers at an abstract level, 
for maximum generality.  However, a 
good choice of hyperparameters is 
usually necessary to make them work 
well on real-world problems, and tricks 
are often used to make most efficient 
use of these methods and extend their 
capabilities.” 

G. Montrevan, et.al., “Methods for Interpreting and 
Understanding Deep Neural Networks.”



2222

Summary: Observations and Issues

• AI is effective for narrowly defined tasks and only identifies correlations in 
(complex) data 

• Access to and availability of “good” and “labelled” data is one of the biggest 
challenges for AI

• We need a sustainable data and compute infrastructure 

• While we have big machines, we don’t have scalable algorithms

• Vulnerability threats for AI (hacking, intentional manipulation) are a huge 
concern for deployment

• We don’t know how to do validation

• HCI is an important component of the workflow, including explainability and 
interpretability

• Deployment of AIs introduces a whole new set of challenges

• Need to understand the ethics and human impact


