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Drivers - Societal ===

Climate Change
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Drivers
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Increasingly stringent regulations, focus on RDE, City Cen-',-'__,'
mandates are applying pressure to industry for zero-emissia
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City Center Low Emission Zones
(LEZs) or Internal Combustion
Engine (ICE) bans are planned.

Increased emphasis on real-world
driving emissions (RDE).
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NVH expectations

Electrical loads

Balancing CO, and Criteria emissions reduction regulatio :
expectations requires an integrated approach. .
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Global Induistry Elg

Cutitcation Growth Projection

B Conventional Vehicle with M Hybrid Electric Vehicle (HEV) Plug-In Hybrid Electric Vehicle (PHEV) Zero Emissions Vehicle (ZEV)
Internal Combustion Engine (ICE) with ICE with ICE Full Battery Electric or Fuel Cell

2015 2020 2025 2030

Source: Navigant, LMC, BNEF, Juniper, MIT, IHS, Accenture, KPMG, PwC, JATO, FSS, Exxon, GM, Hyundai, Honda, Nissan, Toyota, Ford

Electrification continues to expand, with significant growth ex
decade. A substantial portion of powertrains will still utilize inte
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I8 (HEY)

Internal combustion engine (ICE) powertrain combined with electric drive and energy storage systems
* Scheduling engine operation o
* Vehicle energy recuperation Py Power

Engine
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Key Benefits: - /
* CO, - significant TTW efficiency improvement zlz //?:,T,’;"“,T”E"
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Hybrid Electrical System Power [kW]

Key Challenges:

CO, benefit is a function of system
electrical power

* Cost - substantial incremental cost for electric
machines, power-electronics, and batteries

* Package - additional electrification components
make it difficult to package

Full HEVs offer significant CO, / fuel economy improvem'e'_-'r-,f_;' -
but cost remains a significant challenge. .




Plug-In Hybrid EIe_gf Vehicle (PREV)
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Hybrid electric powertrain with increased battery energy capacity (vs. HEV) and external charging capability

* Sustained electric drive capability .
* Displace fuel use with grid energy Bafoyy "~ Engne. [
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Key Benefits:
. CO, -

- TTW benefit can be significantly better than HEV

- WTW opportunity depending on grid energy source LR R T NI
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%CO2 reduction vs HEV
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Tank-to-Wheel CO, benefit is a ]

function of battery energy capacity
|

Key Challenges:

* Cost

* Technical complexity
* Package

Plug-in HEVs offer an even greater CO, opportunity than'F'_'.;._: -
miles, but cost and package are even greater challenges.




Parallel Hybrid

mm= Mechanical power
mm==  Electrical power

Electric motor

* Clutch

Wheels

Clutch

Battery

* Leverages existing conventional
transmission architectures

* Retains mechanical path of
conventional powertrain

* Enhances base conventional
powertrain performance

___

Powersplit

=in - Architectures

Wheels

Traction motor

Generator

| Battery |

* Simplified dedicated hybrid transmission
design

* Engine power is split between electric
and mechanical paths

* CVT functionality

* Efficient e-drive and regen power flows

Hybrid electric powertrains can be classified according to thes

drive different engine requirements.
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Series Hybrid

mmm  Mechanical power
m=== Electrical power

Generator Traction motor

heeIs
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| Battery |

* Engine mechanically de-coupled
from wheels — IVT functionality

* High degree of modularity

* Most efficient e-drive and regen
power flows
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iZation

Engine Efficiency/ @pfilm

Conventional * Optimal scheduling .
3 : . : Powersplit HEV
GEJ Y, Step Ratio Peak BTE most important
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Parallel HEV w
Step Ratio A/T

6000

* High frequency of Low Load
operation 2
* Wide dynamic range required

1000
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* Improved scheduling
* Some part load operation

Different transmission architectures produce differences |
Consequently, the engine needs to be optimized in the context c



Powertrain Efficien FHEY Sulbsystem Losses
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HEV Powertrain Energy Loss Map Engine Efficiency Optimization

Gasoline Example
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. .. Boosting Systems
Combustion Fuel Injection . f YN - densit
e Advanced direct injection systems Improved fo e. f >y
n njector Design e Improved transient response
e Improved fuel economy — ooy ke . ) o
« Reduced NOx emissions * Boost requirements to drive wide range Cooled EGR
Multi-Hole Solenoid Direct I - =
Injector at Increased i: * I Fixed Variable Sequential Electric

Fuel Pressure

B T

PFI + Solenoid DI & ] e | 2 B
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r .
A Cold Start = 4 '
( ] . a 2 .
B. Mixing Y ~
Many types of valve motion possible = T
bkttt o and many mechanisms available Twin-scroll Advanced Geometry Series E-Turbo
D. Peak Torque VVA technologies impact many
E. Peak Power engine attributes
F Tip Out
G. High Load
Cost & Complexity

Power Cylinder Systems

* Reduced mass and inertia
Cooled EGR e Advanced coatings
e Low tension ring packs

Variable Valvetrain
* Variable timing, lift and duration . o
« Improved breathing efficiency e Improved combustion efficiency

e Improved transient response * Decreased pumping work
e Knock mitigation
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Fully electric propulsion system — electric drive system (e-machine & gear box) with high energy capacity
battery and external charging capability -

* All electric drive

* Vehicle energy supplied from grid

]
Battery Power L
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Key Benefits: ;ﬁ-;ﬁ el ?Gﬁ- Tﬁﬁ ;ﬁ— Key Challenges:

 CO, - * Cost - driven by high capacity battery
2
- TTW efficiency >90% 5 * Weight
1 BRY .
- WTW opportunity depending on grid _;_\ R * CO, Impact - dependent on grid energy
» Zero Criteria Emissions F SN * Recharge Time
* P/T Simplicity - T T, - charge rate vs. cell life trade-off
. . . . g A ICE Auto Trans
- fewer parts; easier optimization s\ ] * Range
= 3 « Accelerationinterrupted by
* Electric Driving Experience - i - e
- Instant torque + Smooth acceleration To ovesiown 100

Smooth power delivery
creates a unique driving experience

Battery Electric Vehicles can offer many advantages over F-_,Z -H

requirements with respect to cost, recharge time, and range are k




includes an electric drive system, on-board H2 fuel storage and high voltage battery.

* Electric drive
* Vehicle energy recuperation
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L
Battery + Fuel Cell [

Power

Fuel Cell EVs, with more range and

certain applications, but high cost and lack of infrastructure Ilma: |

3 e gl S
Key Benefits: Key Challenges:
* CO, - * Cost
- TTW efficiency >50% » Package (onboard H2 Storage)
- WTW opportunity depending on H2 source * CO, Impact
» Zero Criteria Emissions - dependent on CO, intensity of
* Electric Driving Experience - H2 energy generation

- Instant torque + Smooth acceleration * H2Infrastructure

* Faster refuel (approaching liquid fuels)
* Longer range capability than BEV
* Greater potential for high energy demand vehicles

faster refueling than BEVs,
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Sustainablle Energv-—fd-

Energy Carbon

Fuels Powertrain
" Source Source

Liquid Fuels

Gasoline (fossil, ¢-)
Diesel (fossil, e-) SI ’ CI,

Ethanol (corn, cell.) [
FAME, HVO wl H EV

GIL,CTL, BTL

Fossil

Costs of renewables for electricity generation are competitive

Methane (CNG, e-)
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Propulsion System

Mobility = Impactie
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Near-Term Mid-Term Long-Term

Build on SYNC,
MyLincoln Mobile and g::::;‘c‘::;;m:‘“ Fully Integrated Connectivity
MyFord Mobile

Embedded Modem

Gonnected Vehices ‘ . ~ * Up front knowledge of vehicle route

Global Infrastructure

---- X 4 * Look ahead interaction with other vehicles & infrastructure

Facilitate Flexible Ownership & Usership N
..... ope . .
s o] 23 rh * Increased utilization improves “customer value”

CAR smM@ FRACTIONAL PAY-AS-YOU-GO
OWNERSHIP SOLUTIONS

% * Centralized deployment - efficient management

Provide Multi-Modal Urban Solutions Of éne rgy ! nfra structure

MoBLI * Revised durability requirements

=) * Complete knowledge & control of driver behavior

* Auxiliary load management (AV technologies)

AUTONOMOUS
VEHICLES

Connectivity, Mobility, and Autonomy offer many new deg
system — a broader transportation systems view is needed




