

Future Vehicle Propulsion Systems: Options and Implications

Tom McCarthy

Chief Engineer – Powertrain Research & Advanced Engineering Ford Motor Company

Smoky Mountains Mobility Conference October 2 - 4, 2018 Chattanooga, Tennessee

Climate change (global), energy security (regional), and air quality (local) are key factors which are driving the increased demand for environmentally sustainable transportation.

Drivers - Regulatory

Go Further

Increasingly stringent regulations, focus on RDE, City Center access bans, and LEZ / ZEV mandates are applying pressure to industry for zero-emissions propulsion alternatives globally.

Regulations & Balancing Customer Requirements

Balancing CO₂ and Criteria emissions reduction regulations and increasing customer expectations requires an integrated approach.

Global Industry Electrification Growth Projection

Go Further SLIDE 5

Source: Navigant, LMC, BNEF, Juniper, MIT, IHS, Accenture, KPMG, PwC, JATO, FSS, Exxon, GM, Hyundai, Honda, Nissan, Toyota, Ford

Electrification continues to expand, with significant growth expected beginning mid-next decade. A substantial portion of powertrains will still utilize internal combustion engines.

Hybrid Electric Vehicle (HEV)

Internal combustion engine (ICE) powertrain combined with electric drive and energy storage systems

- Scheduling engine operation
- Vehicle energy recuperation

• Package - additional electrification components make it difficult to package

Go Further SLIDE 6

CO₂ benefit is a function of system electrical power

Full HEVs offer significant CO_2 / fuel economy improvement over conventional powertrains, but cost remains a significant challenge.

Plug-In Hybrid Electric Vehicle (PHEV)

Hybrid electric powertrain with increased battery energy capacity (vs. HEV) and external charging capability

- Sustained electric drive capability
- Displace fuel use with grid energy

Key Challenges:

- Cost
- Technical complexity
- Package

Plug-in HEVs offer an even greater CO₂ opportunity than Full HEVs due to the electrified-only miles, but cost and package are even greater challenges.

Go Further SLIDE 7

Hybrid Electric Powertrain - Architectures

Go Further SLIDE 8

Hybrid electric powertrains can be classified according to these main architecture types which drive different engine requirements.

Different transmission architectures produce differences in engine speed & load scheduling. Consequently, the engine needs to be optimized in the context of the powertrain system.

Powertrain Efficiency – HEV Subsystem Losses

HEV Powertrain Energy Loss Map

Gasoline Example 80% Expansion ratio, Dilution, S/V, Combustion phasing and Duration 70% Hot Cold 60% Cooled EGR, of Fuel Energy Dilution, VVA, VCR 50% Cyl. Deactivation BTE 40% Friction Extend Dynamic Thermal Range 30% (Boosting, GTDI) % Start/Stop 20% PFI NA 10% 0% 40% 60% 0% 20% 80% 100% Trans-Dln Pwr Ele & Battery Aux Load Engine % Load Mech E-Machine Losses Losses Losses Losses

Engine losses dominate and are the largest lever for increasing HEV efficiency. Industry trends are toward continued development in I.C.E. technology for improved thermal efficiency.

Engine Efficiency Optimization

Advanced I.C. Engine Technologies

Combustion

- Advanced direct injection systems
- Improved fuel economy
- Reduced NOx emissions

Motion Descriptors: Timing, Duration, Lift, fixed, discrete, variable					
Motion Descriptors	DL fixed T:v D:f L:f	DL coupled T:f D:d L:d	DL coupled T:f D:v L:v	TD uncoupled T:v D:v L:f	LTD uncoupled
Mechanism Attributes	Phaser TiVCT = Base	CPS 2 or 3 Step + Phaser	CVVL+Phaser	CVVD, EVA	Hydraulic VA
A. Cold Start Emissions	ΓL				
B. Mixing	Many types of valve motion possible and many mechanisms available VVA technologies impact many engine attributes				
C. Time-to-Torque					
D. Peak Torque					
E. Peak Power					
F. Tip Out					
G. High Load					
Cost & Complexity	-				

Variable Valvetrain

- Variable timing, lift and duration
- Improved breathing efficiency
- Improved transient response

Fuel Injection

Cooled EGR

- Improved combustion efficiency
- Decreased pumping work
- Knock mitigation

Boosting Systems

- Improved power density
- Improved transient response
- Boost requirements to drive wide range Cooled EGR

Power Cylinder Systems

- Reduced mass and inertia
- Advanced coatings
- Low tension ring packs

Advanced engine technologies will continue to be developed and implemented to improve thermal efficiency, reduce emissions and minimize energy losses.

Battery Electric Vehicle (BEV)

Fully electric propulsion system – electric drive system (e-machine & gear box) with high energy capacity battery and external charging capability

- All electric drive
- Vehicle energy supplied from grid

Key Benefits:

- CO₂ -
 - TTW efficiency >90%
 - WTW opportunity depending on grid
- Zero Criteria Emissions

• P/T Simplicity -

- fewer parts; easier optimization
- Electric Driving Experience -
 - Instant torque + Smooth acceleration

Key Challenges:

- Cost driven by high capacity battery
- Weight
- CO₂ Impact dependent on grid energy
- Recharge Time
 - charge rate vs. cell life trade-off
- Range

Battery Electric Vehicles can offer many advantages over F- / P-HEVs, but meeting customer requirements with respect to cost, recharge time, and range are key to broad acceptance.

Battery Power

Fuel Cell Electric Vehicle (FCEV)

Fuel cell powertrain generates electrical power using hydrogen and oxygen within a fuel cell stack – system includes an electric drive system, on-board H2 fuel storage and high voltage battery.

- Electric drive
- Vehicle energy recuperation

• Greater potential for high energy demand vehicles

Key Challenges:

- Cost
- Package (onboard H2 Storage)
- CO₂ Impact
 - dependent on CO₂ intensity of H2 energy generation
- H2 Infrastructure

Fuel Cell EVs, with more range and faster refueling than BEVs, may be a viable ZEV option in certain applications, but high cost and lack of infrastructure limit implementation.

Sustainable Energy Options

Costs of renewables for electricity generation are competitive

Go Further SLIDE 14

Low-carbon fuel and renewable electricity options can be developed to greatly reduce WTT CO₂ emissions, but they must be cost effective and integrated into the energy infrastructure.

Mobility – Impact on Propulsion System

Go Further SLIDE 15

Connectivity, Mobility, and Autonomy offer many new degrees of freedom for the propulsion system – a broader transportation systems view is needed to fully realize the benefits.